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GENERAL INTRODUCTION 

 
The accelerated population growth globally necessitates the production of increasing 

amounts of food (Taghizadeh-Mehrjardi et al., 2020). Short-term meeting of the food demand 

is achieved by conventional intensive agricultural production, but often at the cost of long-term 

sustainability and soil degradation (Mandal et al., 2020). An additional challenges climate 

change and environmental contamination, undermining the effectiveness of conventional 

cropland management (Chemura et al., 2020). The two most commonly used approaches within 

conventional agricultural production systems to increase crop yield are: 1) formation of new 

agricultural areas by transforming the land cover; and 2) yield increase on existing cropland by 

adapting agrotechnical operations, including increased use of fertilizers and pesticides. 

Land use transformation has a greater potential to increase overall yield compared to 

improving agricultural practices on existing cropland (Layomi Jayasinghe et al., 2019; Song 

and Zhang, 2021). The most common transformation of new agricultural land is from forest and 

wetland areas, which consequently affects the destruction of natural habitats and poses a threat 

to biodiversity. Habitat destruction is the most common cause of flora endangerment in the 

Republic of Croatia, according to the Red Book of Vascular Flora (Nikolić and Topić, 2005). 

The application of fertilizers and pesticides is necessary for the continuous production of high 

and stable yields in conventional intensive agricultural production (Møller et al., 2021). Their 

quantity further increases in case of non-compliance with crop rotation, inadequate 

agrotechnical operations and cultivation of certain agricultural crops in a naturally unsuitable 

location (Song and Zhang, 2021). This approach results in contaminating the environment by 

imputing heavy metals (primarily copper) and persistent organic pollutants, per the Ordinance 

on the protection of cropland from contamination (Official Gazette, 71/2019). Environmental 

contamination thus has a direct impact on human health, flora and fauna by spreading through 

surface water and groundwater and by accumulation in living organisms. 

In response to the need for the long-term sustainability of increasing agricultural 

production, alternative approaches of increasing crop yields have been developed in recent 

decades. Among them, suitability studies and precision agriculture, based on the integration of 

geoinformation technologies within the geographic information system (GIS) stand out. By 

cultivating crops in naturally suitable areas, it is possible to achieve equal or higher yields while 

reducing the need for fertilizers and pesticides on existing cropland with a conventional 

approach (Dedeoğlu and Dengiz, 2019). Given that relevant abiotic factors are difficult or 

impossible to influence, it is necessary to adjust the agricultural management plans and crop 

rotation in order to create conditions for sustainable and environmentally-friendly agriculture 

(Song and Zhang, 2021). Due to the temporal variability of abiotic factors, primarily caused by 

climate change, regular monitoring and analysis of suitability level changes are necessary 

(Chemura et al., 2020). The inventory of the current suitability levels has a direct practical 

significance for agriculture, serving as a basis for issuing recommendations to adjust 

agrotechnical operations and establish irrigation systems in vulnerable areas (Taghizadeh-

Mehrjardi et al., 2020). To this end, methods of spatial analysis in the GIS environment have 
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been developed, of which GIS-based multicriteria analysis in combination with analytic 

hierarchy process (AHP) is currently leading as a standard for determining cropland suitability. 

While it is recognized as a standard for suitability determination, this approach is susceptible 

to subjectivity, complexity and inability of integrating big data (Progênio et al., 2020), which 

negatively impacts the reliability and repeatability of such methods. 

The application of machine learning classification methods has successfully resolved 

similar shortcomings in the prediction of biological, chemical and physical soil properties, 

upgrading the conventional approach. Hengl et al. (2017) integrated soil sampling data and 

freely available spatial data representing abiotic factors into a modern machine-based prediction 

system in the SoilGrids project. This represents the beginning of a paradigm shift in the 

prediction of spatial variables in the environment, which allows for the exceptional potential 

for application in disciplines outside of pedology. However, this potential was only recognized 

last year by the scientific community for the purpose of determining the cropland suitability 

and is at a very early stage of development. Of the few studies conducted, Taghizadeh-

Mehrjardi et al. (2020) compared the suitability prediction accuracy of wheat and barley 

cultivation by comparing traditional parametric methods and machine learning. The overall 

precision of the machine learning method resulted in 29% higher overall accuracy for wheat 

and 26% higher for barley compared to the traditional approach. This approach also quantified 

the relative importance of individual input abiotic factors, which represents an objective and 

inverse approach to the weighting process in the AHP method. Møller et al. (2021) recognized 

a similar potential of machine learning in the suitability prediction, stating the possibility of 

accurately determining the individual components of suitability, emphasizing the socio-

economic and ecological components. 

While the exceptional potential of machine learning and remote sensing data in 

suitability determination was noted, there are still no comprehensive and straightforward 

solutions. The aim of this dissertation is to upgrade these methods regarding the three currently 

most significant shortcomings of the conventional GIS-based multicriteria analysis. Cropland 

suitability determination methods were developed for any major crop type, while soybean was 

selected as a representative crop type in the dissertation due to its increasing importance in 

global food production. Soybean was cultivated at 838.5 km² in 2020, covering about 13.7% of 

the country’s arable cropland. Its importance in human and livestock nutrition is steadily 

increasing, as one of the main sources of edible oils and proteins. Soybean cultivation enhances 

soil fertility and enriches it with nutrients, especially nitrogen, which makes it a very useful and 

flexible crop in the formation of crop rotation. Three research hypotheses have been defined: 

1. Suitability results can be validated using a computationally efficient method using 
globally available satellite multispectral images. 

2. Automation of spatial GIS modeling of abiotic suitability factors for the example of 
soil texture is feasible according to a globally accepted classification standard and 
regardless of the range of input values. 

3. Suitability determination using machine learning can be performed with high 
reliability by reducing subjectivity in the selection of abiotic factors and their 
weighting in relation to the conventional GIS-based multicriteria analysis. 
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Abstract: Soybean is regarded as one of the most produced crops in the world, presenting a
source of high-quality protein for human and animal diets. The general objective of the study
was to determine the optimal soybean land suitability and conduct its mapping based on the
multicriteria analysis. The multicriteria analysis was based on Geographic Information System
(GIS) and Analytic Hierarchy Process (AHP) integration, using Sentinel-2 multitemporal images for
suitability validation. The study area covered Osijek-Baranja County, a 4155 km2 area located in
eastern Croatia. Three criteria standardization methods (fuzzy, stepwise and linear) were evaluated for
soybean land suitability calculation. The delineation of soybean land suitability classes was performed
by k-means unsupervised classification. An independent accuracy assessment of calculated suitability
values was performed by a novel approach with peak Normalized Difference Vegetation Index (NDVI)
values, derived from four Sentinel-2 multispectral satellite images. Fuzzy standardization with the
combination of soil and climate criteria produced the most accurate suitability values, having the top
coefficient of determination of 0.8438. A total of 14.5% of the study area (602 km2) was determined as
the most suitable class for soybean cultivation based on k-means classification results, while 64.3%
resulted in some degree of suitability.

Keywords: AHP; standardization; NDVI; fuzzy algorithms; k-means; FAO suitability classification

1. Introduction

The increasing demand for food and bioenergy in the world stimulated the development of land
suitability calculation methods, as a basis for effective agricultural land management and environmental
sustainability [1,2]. Conventional agriculture is characterized by a very high input of fertilizer, pesticides
and herbicides, having a negative long-term impact on sustainability [3]. The selection of naturally
suitable areas for the particular crop type cultivation reduces the overall application of inputs,
creating an optimal environment for crop growth [4]. Agricultural land management plans based on
inappropriate evaluation of natural resources limit crop yields and increase production costs [5]. Chen
et al. [6] recommended the development of crop-specific evaluation indices through land suitability
determination to ensure the sustainability of agricultural production. Delineation of suitability classes
with homogenous characteristics is a fundamental segment of land evaluation, allowing effective
implementation of land use planning in the field [7]. Mapping of such suitability classes for particular
crop cultivation is essential for the transfer of knowledge to the end-users, whether to land management
experts or individual farmers and farming companies [8].

Multicriteria analysis is widely recognized as the method for the selection of the most suitable
(optimal) location and its alternatives in various areas, such as agriculture [9–11], forestry [12], land
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management [13] and environmental planning [14]. With the integration of spatial components
from Geographic Information System (GIS), an approach of GIS-based multicriteria analysis enables
a suitability modeling for any entity related to space [15]. The benefit of GIS-based multicriteria
analysis in agriculture is its universal applicability regarding crop types, area size and location in the
world. Its potential is conditioned only by the crop expert’s knowledge of the optimal agroecological
conditions of the selected crop type and the quality of the input spatial data [16,17]. The core
procedures of multicriteria analysis are based on the establishment of the relationship between
relevant criteria [18]. Many methods have been developed to determine the relative relationship
between criteria for the suitability calculation, one of the most notable being the Analytic Hierarchy
Process (AHP) [19]. Standardization of criteria values is a necessary procedure in the calculation of
suitability models [20]. Input values of all criteria are commonly transformed into a unique number
interval during the standardization process for further processing. Many authors noted an impact of
the selection of standardization methods in multicriteria analysis on land suitability values [21–24].
Standardization using simple linear scale transformation was usually the selected method in these
studies. The hybridization of GIS-based multicriteria analysis with unsupervised classification presents
a novel approach in the management of calculated suitability values, enabling the effective creation of
land suitability classes [25]. The delineation of suitability classes is regarded as a necessary procedure in
suitability analyses and precision agriculture, as it significantly facilitates the application of GIS-based
multicriteria analysis results in the field [26]. Van Niekerk noted the superiority of computer algorithms
over traditional manual mapping techniques for the delineation of suitability classes, as they allow
objective and time-efficient classification [27].

Soybean is a fundamental component of agricultural land management plans worldwide,
presenting a major source of protein for humans and a high-quality animal feed [28]. According
to the Food and Agriculture Organization of the United Nations (FAO) publication [29], soybean
accounted for about one-third of the total harvested area devoted to annual and perennial crops, while
its share in global oil-crop output was 44%. According to the projection by the European Commission
for the period between 2019 and 2030, the production of soybean food products will continue to
grow due to demand for locally produced plant-protein food [30]. The same source stated that the
soybean area would show significant land-use change, resulting in a 5% harvested area increase by
2030. The long-term projection from the United States Department of Agriculture to 2029 predicts
continuous global demand for soybean oil for biodiesel production [31]. The competitive position
of soybean among arable crops has steadily improved due to consistent improvements in yield and
reductions in production costs [29]. However, additional investment for soybean yield improving
research was urged to land policymakers and managers [32].

Medium-resolution multispectral satellite imagery presents an important data source for the
observation of crop characteristics in yield improving research and mapping for agricultural land
management [33,34]. Sentinel-2 is a multispectral satellite mission from the European Space Agency
Copernicus program, started in 2015 [35]. The constellation of Sentinel-2 mission is based on two
satellites, Sentinel-2A (S2A) and Sentinel-2B (S2B), orbiting 180◦ apart [36]. Sentinel-2 provides the
possibility of an effective crop monitoring, having a 290 km swath width, high imaging resolution
(up to 10 m) and revisit time of two to three days at mid-latitudes [36]. Crop parameters with the
application of remote sensing are commonly monitored using vegetation indices [37]. The most
used vegetation index is the Normalized Difference Vegetation Index (NDVI), which enables the
determination of the relationship between photosynthetic and optical properties of crops [38]. NDVI
is the most widely used indicator in studies regarding crop biomass and chlorophyll content [39].
Satellite-derived vegetation indices have been successfully used as a part of various crop models, such
as the estimation of maximum evapotranspiration and irrigation requirements [40] and multitemporal
crop monitoring [38].

The general objective of the study was the determination of optimal soybean land suitability and
its mapping based on GIS-based multicriteria analysis. For this purpose, the evaluation of the three
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most commonly used standardization methods in recent GIS-based multicriteria analysis studies was
conducted. The validation of calculated suitability values was performed using a novel peak NDVI
method derived from Sentinel-2 multitemporal images as an independent accuracy assessment.

2. Materials and Methods

The proposed method of GIS-based multicriteria analysis for soybean suitability calculation and
its validation consists of six major steps (Figure 1). These are the selection and preprocessing of relevant
criteria, data standardization, weight determination, criteria aggregation, validation of calculated
suitability models and creation of final suitability maps. Open-source GIS software was used in this
research: SAGA GIS v7.4.0 (Hamburg, Germany) [41] for data preprocessing and calculations, QGIS
v3.8.3 (Grüt, Switzerland) [42] for data visualization and GRASS GIS v7.8.2 (Bonn, Germany) [43] for
the calculation of solar irradiation.
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Figure 1. The workflow of soybean land suitability calculation and evaluation.

2.1. Study Area

The study area covers Osijek-Baranja County, a 4155 km2 area located in eastern Croatia (Figure 2).
According to the Croatian Bureau of Statistics [44], Osijek-Baranja County has the largest utilized
agricultural area in Croatia, covering 13.6% of total country agricultural land in 2016. Corine 2018 Land
Cover data showed that agricultural areas are the dominant land cover class in the county, covering
64.5% of the county’s area. Forests are the second-largest class covering 26.7% of the county’s area,
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followed by artificial surfaces (3.8%), wetlands (2.7%) and water bodies (2.3%). Croatia follows a world
trend of an increase in soybean cultivation. According to [45], a total of 111,316 t was produced in
2013 and 244,075 t in 2016, a 119% soybean production increase during four years. Soybean is the
fourth highest cultivated crop in the study area behind maize, wheat and sunflower, covering 8.54%
of the total agricultural land in the county during 2019 per Croatian Paying Agency for Agriculture,
Fisheries and Rural Development data. Osijek-Baranja County has a moderately warm, rainy climate
on a Köppen scale, according to the same source. Early soybean variants were commonly sown in
eastern Croatia in recent years [46]. Sowing of these variants was conducted in late April, while harvest
typically occurred mid-October. The Croatian agricultural and forestry advisory service recommends
the application of 30 kg/ha of nitrogen (N), 60 kg/ha of phosphorus pentoxide (P2O5) and 90 kg/ha of
potassium oxide (K2O) during basic fertilization in autumn and minor adjustments before sowing [47].
Irrigation of soybean fields has been extremely overlooked in the study area, with only 64 ha employing
some sort of irrigation system, according to Croatian Paying Agency for Agriculture, Fisheries and
Rural Development data for 2019.
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2.2. Selection and Preprocessing of Relevant Criteria

Climate and soil criteria were considered to have the most significant impact on soybean cultivation,
based on previous research regarding soybean land suitability [48–52]. Relevant climate and soil
criteria selected in this study are shown in Table 1. The selected number of criteria in each criteria
group is six, which meets the specifications for the application of the AHP method for the consistency
of information between criteria [53]. The main data sources for the modeling of selected criteria
were: Croatian Meteorological and Hydrological Service (DHMZ) data during the soybean growth
period between April and October for years 2015–2019; Croatian Agency for the Environment and
Nature (CAEN) soil samples collected during 2016; a basic pedologic map of Croatia; Shuttle Radar
Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) global digital elevation models.
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Table 1. Selected criteria for soybean suitability calculation.

Criteria Group Criterion Name Unit Description Source Native Format

Climate

Tmin
◦C Mean minimum air

temperature DHMZ tabular

Tavg
◦C Mean average air

temperature DHMZ tabular

Tmax
◦C Mean maximum air

temperature DHMZ tabular

Precipitation mm Total precipitation amount DHMZ tabular
AirHumidity % Mean relative air humidity DHMZ tabular

Solar Irradiation kWh
/m2

Mean daily global
horizontal irradiation ASTER raster

Soil

SoilType / Soil type classes Basic pedologic
map of Croatia

vector
(polygon)

pH / Soil pH values CAEN vector (point)
SoilTexture / Soil texture classes CAEN vector (point)

C/N /
Carbon-to-nitrogen soil

ratio CAEN vector (point)

Slope ◦ Terrain slope SRTM raster

TWI /
Topographic wetness

index SRTM raster

Climate criteria consisting of Tmin, Tavg, Tmax, Precipitation and AirHumidity were interpolated
from 15 DHMZ weather station data. Soil samples for modeling of soil criteria were downloaded
from HAOP Web Feature Service. Samples were collected in the field by Croatian Geological Survey
and Croatian Agency for Agricultural Land according to standards ISO 10390:2005 for soil pH, ISO
11277:2009 for soil texture and ISO 11466:1995 for soil C/N. From 72 regularly distributed samples in
the study area, 48 were detected as agricultural area land cover and filtered for further processing. The
solar irradiation criterion was defined as Global Horizontal Irradiation (GHI), according to previous
research [54]. GHI was calculated using the novel method developed by Gašparović et al. [55], based
on the ASTER digital elevation model, Linke turbidity factor [56] and effective cloud albedo acquired
from Meteosat Second Generation satellites SARAH Edition 2 [57]. According to Gašparović et al. [55],
GHI produced 3% higher accuracy than commercial solar irradiation data, compared to the data
measured from ground stations. The same approach for GHI calculation was successfully applied in
similar research [14]. The final GHI used in this research was an average daily mean value (kWh/m2)
between April and October in 2013 to 2015. A three-year period was used to reduce the influence of
weather conditions. The time frame between April and October covers the vegetation period of all
major soybean varieties cultivated in the study area. Tmin represents a mean minimum air temperature
for April and May, as soybean is most susceptible to frost at early vegetation stages that occur during
April and May. Tmax represents mean maximum air temperatures in June, July and August and refers
to the drought risk. Soil type classes were derived from a basic pedologic map of Croatia. Soil pH
was selected as a criterion due to soybean demands for neutral soil, with neutral and mildly acidic
soils having optimal values. Soybean does not have strict demands regarding soil C/N [58], but it
has a major impact on sustainable planning of overall agricultural production in the study area. Soil
C/N deficiency presents a major issue in the study area [59], so crop types with larger demands for
C/N would benefit more for being cultivated on soil with higher soil organic content. Soil texture
classification was conducted in twelve classes from the soil texture triangle, according to silt, sand and
clay soil content [60]. Loam was considered as the most suitable soil texture, allowing the optimal root
system development for soybean [61]. The process of soil texture raster generation from silt, sand and
clay soil content rasters was automatized using Python v3.7.4 (Wilmington, Delaware, United States of
America) [62]. The slope was determined using SRTM 1-arc second global digital elevation model. The
slope is associated with the exploitation of air humidity in soybean cultivation, which is important for
its development in reproductive growth stages. Terrain slope values were considered as hilly terrain
restricts the adequate exploitation of agricultural machinery. Topographic wetness index (TWI) was
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calculated in SAGA GIS for the determination of specific catchment areas, representing the effect of
inclined slopes on the soil water content [63].

Preprocessing of input criteria consisted of the conversion of polygon vector criterion to a raster
format, georeferencing of weather station data and conversion to point vector format, evaluation of
interpolation methods for climate and soil points, interpolation of these values using the most accurate
method and clipping of rasters to study area extents. The selected projection coordinate system was the
Croatian Terrestrial Reference System (HTRS96/TM, EPSG: 3765) with 250 m spatial resolution (ground
sample distance), so all rasters were reprojected and resampled accordingly. Interpolation methods
selected for interpolation accuracy assessment were Ordinary Kriging (OK) [64], Inverse Distance
Weighting (IDW) [65] and Angular Distance Weighting (ADW) [66]. OK and IDW were selected as
they resulted as the most accurate interpolation methods for the interpolation of soil parameters in
studies by Yao et al. and Qiao et al. [67,68]. IDW and ADW produced the highest accuracy of tested
deterministic interpolation methods for climate data in a study by Xavier et al. [69]. Descriptive
statistics (Table 2) were calculated for the determination of input samples normality and stationarity
with the aim of selection of optimal interpolation method [70]. The mathematical model and fitting
range for OK interpolation were selected on the highest possible fitting coefficient of determination to
variogram. Both IDW and ADW were performed with a weight parameter of 2. Accuracy assessment
was conducted based on cross-validation with the leave-one-out procedure, with the coefficient of
determination (R2), root-mean-square error (RMSE) and normalized RMSE (NRMSE) as statistical
indicators. NRMSE was calculated by dividing RMSE with a respective average of measured values
from input climate or soil samples.

2.3. Data Standardization

Three standardization methods were evaluated in this research: linear standardization, stepwise
standardization and fuzzy standardization. The defined number intervals for standardization were
closed intervals containing values from zero to one (0.00, 1.00) or one to zero (1.00, 0.00), where 0.00
designates least favorable and 1.00 designates the most favorable impact on suitability values. The
integration of qualitative and quantitative criteria values was conducted in this procedure. Values
from the selected number interval during standardization were designated to either thematic classes in
case of qualitative criteria or input numeric values for quantitative criteria, according to the level of
suitability. Linear, stepwise and fuzzy standardization were applied to all selected criteria, except for the
qualitative criteria SoilType and SoilTexture. For the two qualitative criteria, stepwise standardization
was selected as a standardization method, being the only method that could operate with qualitative
values. Consequentially, these values were used in combination with all three applied standardization
methods for quantitative criteria.

The linear standardization method, based on linear scale transformation, is the most
frequently used deterministic method for standardization in GIS-based multicriteria analysis [71].
The deterministic nature of the method ensures completely objective standardization, with no crop
expert’s impact on the standardization result. Linear standardization produced good results for
the standardization of distances to infrastructure objects [72] and climate data for crop suitability
calculation [73]. The calculation of linear standardization values was based on the score range
procedure [20].

Stepwise standardization is also a commonly used standardization method in GIS-based
multicriteria analysis [74]. It is based on the distinctive selection of the input values in number
intervals defined by the crop expert for the standardization in new classes. An arbitrary value in the
standardization interval has been assigned to each new class, allowing an extensive subjective crop
expert’s impact on the result. Four to six classes were used for stepwise standardization, depending on
the heterogeneity of input criteria values. Stepwise standardization was successfully applied for the
standardization of soil chemical properties [75] and climate criteria [76].
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Fuzzy standardization was based on the application of fuzzy membership functions. Similarly to
stepwise standardization, fuzzy membership functions allowed extensive impact on the standardization
result by the subjective crop expert. Three membership functions were used in this research: linear,
S-shaped and J-shaped [77]. Linear membership function (2) was a base for the calculation of S-shaped (3)
and J-shaped (4) membership function values. Topographic indicators, such as slope, were successfully
standardized using fuzzy membership functions [78]. The same method was also applied for the
standardization of soil criteria [79] and the combination of soil and climate criteria [80] in agriculture
land suitability calculations. Membership function parameters were marked as a and d for the definition
of support, alongside b and c for the definition of the core of the membership function [81]. The variety
of selected membership functions allowed the subjective crop expert’s impact on the intensity of
ascending and descending of standardized values. Intermediate values between parameter values
were gradually calculated, allowing the continuous representation of the criteria effect on suitability.
Equations for the calculation of the standardized values using fuzzy membership functions were
derived from Novák [77].

2.4. Weight Determination

Weight determination was conducted using the AHP method in three approaches for climate
criteria group, soil criteria group and combined criteria group consisting of both climate and soil
criteria. Two pairwise comparison matrices were created to quantify criteria weights for climate and
soil criteria, as a base of the AHP method [82]. Individual weights per criteria group were calculated
using separate pairwise comparison tables. Climate and soil criteria groups were considered as equally
influential in suitability result. The primary motive of using three approaches was the estimation of
criteria groups’ impact on the suitability result in the validation process. This procedure allowed the
criteria modifications for further application, through the elimination of redundant criteria and the
addition of new criteria. AHP is regarded as one of the most advantageous weight determination
methods in the multicriteria analysis by Musakwa [83], primarily due to being flexible, straightforward
and comprehensive. It was successfully applied in GIS-based multicriteria analyses for crop cultivation
suitability [10,84,85], irrigation suitability [76,86] and environmental analyses [14].

Each combination of two criteria per criteria group was evaluated in pairwise comparison matrices
by assigning the preferred criteria value ranging from 1 (equal preference) to 9 (extreme preference) [82].
The determined values were associated with preferred criteria in the pairwise comparison matrix,
while the reciprocal value was assigned to the less-preferred criteria. The consistencies of pairwise
comparisons per matrix were evaluated by Consistency Ratio (CR) (1), using the Consistency Index
(CI) (2) and the Random Consistency Index (RI) [87]:

CR =
CI
RI

, (1)

CI =
λ − n
n − 1

, (2)

where λ is the average value of consistency vector and n is the number of parameters. RI values were
predefined by Saaty [87], depending on the number of compared criteria in the pairwise comparison
matrix. The acceptable value of CR is 0.10, while higher values indicate that the revision and modification
of the pairwise matrix should be conducted [88].

2.5. Criteria Aggregation

The weighted linear combination was the selected method for criteria aggregation in the process
of soybean suitability calculation. It is the most commonly used aggregation method in the GIS-based
multicriteria analyses [89]. The advantages of the selected method were simplicity and time-efficiency
in the criteria aggregation, as well as the objective selection of the most suitable location and its
alternatives, ranked by the suitability values [90].
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The nine suitability combinations of three standardization methods and three weight determination
methods were calculated, resulting in nine suitability maps. Soybean suitability index (SSI) was
selected as soybean land suitability value, ranging from 0 to 1. According to Eastman [20], the equation
for SSI calculation using weighted linear combination was (3):

SSI =
∑

wiXi × C (3)

where wi denotes the weight of factor i, Xi denotes the standardized values of factor i and C denotes a
Boolean layer of constraints.

2.6. Validation of Calculated Suitability Models

Calculated suitability values were validated by NDVI values derived from Sentinel-2 Level 2A
images. No official database or reliable records about yield exist in Croatia, so NDVI was selected as a
basis for validation. Since it was derived from Sentinel-2 images, nearly global applicability is ensured.
Four images were downloaded, reprojected to HTRS96/TM and clipped to study area extents to cover
the soybean seed filling growth stage (R6). This growth stage is associated with the highest total
above-ground biomass during the soybean phenology cycle [91]. NDVI derived from Sentinel-2 images
produced a high correlation with biomass and chlorophyll content of crops in previous research [92].
Soybean total above-ground biomass also resulted in a high correlation with yield [93]. These factors
were selected as representative for validation with NDVI, as higher biomass and yield are expected on
more suitable land for soybean cultivation. Not all soybean variants cultivated in the study area reach
the R6 stage at the same time due to different periods of sowing, so the necessity for multitemporal
images emerged. The time frame starting from 15 July to 10 August was determined for all soybean
varieties in the study area to reach the R6 growth stage, based on the empirical knowledge of soybean
cultivation in the study area. Four Sentinel-2 images were selected for validation from this time frame
based on their availability and lowest possible cloud cover percentage (Table 3). The used images were
temporally evenly distributed in the time frame of the R6 soybean growth stage and sensed in very
similar meteorological conditions (Figure 3). All four NDVI images were used for the determination of
peak NDVI of soybean test parcels, with slightly more than two-thirds having its peak NDVI during
late July.

A total of 204 soybean test parcels, evenly distributed on the study area, were selected as the
ground truth data. The total cumulative area of soybean parcels was 849.3 ha, with an average
individual area of 4.16 ha. Shapefile vector data representing soybean parcels were collected from
Croatian Paying Agency for Agriculture, Fisheries and Rural Development official spatial database,
filtered by the soybean crop type. Four NDVI rasters derived from downloaded Sentinel-2 images
were overlayed with the centroids of soybean parcels, so all NDVI values within a soybean parcel
were averaged and designated to that centroid. Since spatial resolutions of suitability rasters and
Sentinel-2 images were different (250 m and 10 m, respectively), centroids of reference soybean parcels
with peak NDVI values were used to perform validation of suitability rasters. Centroids of soybean
test parcels were forced inside polygons during creation to represent geometrically irregular parcels
accurately. The comparison of these data sets was achieved with fast processing time, as point vector
was overlayed with raster data. Peak NDVI values per centroid were determined as the maximum
NDVI value per centroid, based on four NDVI rasters derived from multitemporal Sentinel-2 images.

The use of peak NDVI allowed the detection of the R6 growth stage for all ground truth polygons,
which represented all soybean variants in the study area. Such a procedure proved to be robust
regarding the atmospheric effects like clouds and haze on satellite images since validation does not
depend on the individual images. Identification data of Sentinel-2 images used for the validation of
suitability models are shown in Table 2.
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Figure 3. Weather data at the sensing time of four used Sentinel-2 images from weather station Osijek
provided by the Croatian Meteorological and Hydrological Service (DHMZ).

Table 2. Identification of Sentinel 2 images, date and the number of peak Normalized Difference
Vegetation Index (NDVI) values per image.

Tile ID Satellite Sensing Date Day of Year Peak NDVI Values

T34TCR S2B 19th July 2019 200 38
T33TYL S2A 24th July 2019 205 102
T33TYL S2A 3rd August 2019 215 49
T33TYL S2B 8th August 2019 220 15

Four regression functions were selected for the calculation of R2 between suitability values and
reference peak NDVI values. Selected functions were linear (R2

lin), logarithmic (R2
log), exponential

(R2
exp), second-order polynomial (R2

poly2) and third-order polynomial (R2
poly3). Different regression

functions were evaluated to determine the most accurate relationship model between suitability values
and peak NDVI. Validation of each suitability model was based on the highest R2 calculated using
these functions. RMSE and Cohen’s d index were calculated as a complementary statistical values
to R2 for accuracy assessment. Cohen’s d values were interpreted according to [94]. Peak NDVI and
suitability values were normalized in the (0.00, 1.00) range prior to RMSE and Cohen’s d calculation to
describe suitability results while referring to the same number interval.

2.7. Creation of Final Suitability Maps

Unsupervised classification using the k-means algorithm was applied for the delineation of five
suitability classes for each calculated suitability model. Created suitability classes were classified
according to FAO standards in classes representing very suitable (S1), moderately suitable (S2),
marginally suitable (S3), currently unsuitable (N1) and permanently unsuitable area (N2) [95].
Unsupervised classification was therefore conducted in five classes to meet the FAO specification.
Ranking of class suitability values was conducted using mean suitability values of all pixels per class.
The selected method approached the suitability values on a relative basis using a computer-automated
classification. This procedure enabled the creation of suitability classes independently of selected
criteria or study area properties. Such an approach reduced the effect of subjectivity in the pairwise
comparisons of criteria in AHP, which is its major disadvantage [96]. For the application of this
method in the regionalization of agricultural production, the integration of suitability values for
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different crop types, and consequentially from different crop experts, is necessary. By managing the
suitability values using unsupervised classification, the integration was possible since the relative
criteria relationship was retained. The crop experts’ judgment levels have been balanced in the process,
preventing overestimation or underestimation of suitability. The applied approach also ensured the
objectiveness in the creation of suitability classes, as the training data creation was not necessary, in
contrast to supervised classification. Training data creation presents a common source of human error
in classification due to the operator’s subjectivity in the selection of training polygons [97]. Input data
in the k-means algorithm was raster representing suitability values from the most accurate suitability
model. Algorithms based on unsupervised classification were successfully applied for suitability
classification with a single raster input [27]. K-means was successfully applied in various combinations
with GIS-based multicriteria analysis in crop suitability analyses [25,98,99] and delineation of suitability
classes in precision agriculture [100]. Final suitability maps were created by the removal of constrained
areas from the unsupervised classification results. CORINE 2018 Land Cover data was applied to
exclude agricultural land cover, as no other land cover was available for efficient soybean cultivation.
The goal of this step was to exclude permanent natural (forests, wetlands, water bodies) and built-up
objects from classification in a 250 m spatial resolution, so CORINE 2018 Land Cover data was selected
as the most fitting data source due to its high thematic accuracy (85%) [101]. All calculated suitability
models were mutually compared using Pearson’s correlation coefficient in the correlation matrix.

3. Results

The descriptive statistics of input samples for evaluation of interpolation methods are shown in
Table 3. Moderate skewness and high kurtosis deviations were observed from optimal values of zero
and three, respectively. While low coefficients of variation indicated high data stationarity, low data
normality was observed for both climate and soil criteria. Sand soil content was the only exception
from this observation, as it produced both low normality and stationarity.

Table 3. Descriptive statistics of climate and soil samples for interpolation.

Criteria name n mean CV SK KT

Tmin 15 13.8 0.029 0.075 −1.302
Tavg 15 18.2 0.033 0.284 −1.365
Tmax 15 22.9 0.046 −0.469 −1.048

Precipitation 15 457.5 0.100 1.275 0.818
AirHumidity 15 71.9 0.052 1.077 1.689

pH 48 6.7 0.159 0.061 1.400
SoilTexture (Clay) 48 31.5 0.332 0.525 0.176
SoilTexture (Silt) 48 57.8 0.215 0.600 0.563

SoilTexture (Sand) 48 10.7 1.190 1.945 4.348
C/N 48 7.6 0.251 0.747 1.537

CV: coefficient of variation, SK: skewness, KT: kurtosis.

Accuracy assessment results of tested interpolation methods are shown in Table 4.
Both deterministic methods outperformed OK in a case of climate data with a lower number of
samples. IDW was selected as an optimal method for the interpolation of climate data, producing
higher accuracy values than ADW for Tmin, Precipitation and AirHumidity. Accuracy of interpolation
for Tavg and Tmax produced mixed results, as ADW produced higher R2 for Tavg and higher RMSE
and NRMSE for Tmax than IDW, but lower RMSE, NRMSE and R2, respectively. All tested methods
produced lower mean accuracy for soil data compared to climate data. IDW produced the highest
accuracy values for the interpolation of moderately variable data: Clay, Silt and C/N. ADW produced
the highest R2 for pH interpolation and second-best RMSE and NRMSE values behind IDW. OK
produced slightly higher RMSE and NRMSE for interpolation of sand, but 0.0346 lower R2 than IDW.
IDW was therefore also selected as an optimal interpolation method for soil data.
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Table 4. Accuracy assessment of tested interpolation methods.

Input Data OK IDW ADW
R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

Tmin 0.6992 3.479 0.252 0.8371 0.778 0.056 0.7598 0.817 0.059
Tavg 0.7491 1.965 0.108 0.8150 0.797 0.043 0.8198 0.831 0.045
Tmax 0.6060 4.091 0.178 0.8029 1.155 0.050 0.7248 1.050 0.045

Precipitation 0.6787 72.451 0.158 0.8165 25.915 0.056 0.7806 26.269 0.057
Air Humidity 0.6589 8.106 0.112 0.7311 5.049 0.070 0.6842 5.983 0.083

pH 0.5991 0.643 0.096 0.7313 0.526 0.078 0.7407 0.603 0.090
Clay 0.5512 6.570 0.208 0.7022 5.751 0.182 0.6467 6.604 0.209
Silt 0.5930 10.299 0.178 0.6695 9.247 0.160 0.6487 10.458 0.180

Sand 0.6183 1.472 0.137 0.6529 1.477 0.138 0.6458 1.531 0.143
C/N 0.5872 1.873 0.246 0.7726 0.654 0.086 0.6937 0.744 0.097

The most accurate statistical values per interpolation result were bolded.

Soil texture classes resulting after classification were silty clay, silty clay loam, clay loam, loam
and silt loam. The dominant soil texture class in the study area was silty clay loam, covering 72.1% of
the total area. The next two largest classes, silty clay and silt loam, had significant silt content, covering
21.6% of the study area combined. Clay loam and loam mostly covered the transitional areas between
two larger classes, resulting in 3.2% and 3.1% of the study area, respectively. All preprocessed input
criteria rasters are shown in Figure 4.

Parameters for each standardization method were selected as shown in Figure 5. The presence of
a few extreme input values prevented the linear standardization method to expand the full (0.00, 1.00)
number interval to the majority of pixels, resulting in an inaccurate representation of these criteria.
This primarily refers to slope and C/N, where the number interval covers most of the pixels in (0.85,
1.00) and (0.00, 0.25) number interval, respectively. Intermediate values for stepwise standardization
were selected based on standardization classes count, alongside a minimum value of 0.00 and a
maximum of 1.00. The J-shaped and linear methods were the most commonly used fuzzy membership
function for standardization, both being applied for 4 out of 10 quantitative criteria. Precipitation,
SolarIrradiation and AirHumidity resulted in a high variability, while Tavg, Tmin and Tmax produced
moderate variability of the climate conditions in the study area. All soil criteria resulted in high
variability in the study area.

Pairwise comparison matrices were created for climate (Table 5) and soil criteria (Table 6).
Consistency tests for both matrices resulted in the allowed tolerance. The weight sums of interpolated
criteria were 0.877 for climate and 0.431 for soil criteria group.

Calculated R2, RMSE and Cohen’s d values for the validation of suitability models are displayed
in Table 7. Suitability calculated using the climate criteria group constantly produced the lowest
R2, with a maximum for fuzzy standardization using exponential regression. Stepwise and fuzzy
standardization models both produced the highest accuracies for soil and combined criteria groups,
with combined variants being slightly more accurate. Overall, fuzzy standardization with combined
criteria produced the highest R2 and RMSE, presenting the optimal model for soybean land suitability
mapping. RMSE values were based on normalized values, so they resulted in (0.00, 1.00) number
interval and therefore enabled objective accuracy assessment of suitability values. Cohen’s d values
indicated the strongest relationship between fuzzy standardization and soil criteria with peak NDVI
values. The fuzzy standardization with combined criteria also resulted in a small effect size, having a
large value gap between the third-lowest d value of fuzzy standardization with climate criteria.



Remote Sens. 2020, 12, 1463 12 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 25 

 

 

Figure 4. Preprocessed criteria rasters. Figure 4. Preprocessed criteria rasters.



Remote Sens. 2020, 12, 1463 13 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 25 

 

 

Figure 5. Graphs of standardization parameters per criterion for evaluated standardization 

methods. 

Pairwise comparison matrices were created for climate (Table 5) and soil criteria (Table 6). 

Consistency tests for both matrices resulted in the allowed tolerance. The weight sums of interpolated 

criteria were 0.877 for climate and 0.431 for soil criteria group. 
  

Figure 5. Graphs of standardization parameters per criterion for evaluated standardization methods.

Table 5. Pairwise comparison matrix of climate criteria for the weight determination in AHP.

Tmin Precipitation Solar
Irradiation Tavg Tmax AirHumidity Weight

Tmin 1 2 3 3 4 7 0.388
Precipitation 1/2 1 2 3 3 6 0.261

SolarIrradiation 1/3 1/2 1 2 3 4 0.156
Tavg 1/3 1/3 1/2 1 2 3 0.104
Tmax 1/4 1/3 1/3 1/2 1 3 0.082

AirHumidity 1/7 1/6 1/4 1/3 1/3 1 0.042

n = 6, CI = 0.050, RI = 1.240, CR = 0.040.
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Table 6. Pairwise comparison matrix of soil criteria for the weight determination in Analytic Hierarchy
Process (AHP).

SoilType pH Slope SoilTexture C/N TWI Weight

SoilType 1 2 3 3 4 7 0.383
pH 1/2 1 2 3 4 6 0.254

Slope 1/3 1/2 1 3 4 5 0.178
SoilTexture 1/3 1/3 1/3 1 2 4 0.104

C/N 1/4 1/4 1/4 1/2 1 3 0.073
TWI 1/7 1/6 1/5 1/4 1/3 1 0.039

n = 6, CI = 0.093, RI = 1.240, CR = 0.075.

Table 7. Accuracy assessment values of calculated suitability models using reference peak NDVI values.

Value
Fuzzy standardization Stepwise standardization Linear standardization

Climate Soil Climate
+ Soil Climate Soil Climate

+ Soil Climate Soil Climate
+ Soil

R2
lin 0.4056 0.6839 0.8416 0.3016 0.6116 0.6947 0.3290 0.4855 0.6337

R2
log 0.4143 0.6644 0.8273 0.3175 0.6046 0.6944 0.3249 0.4819 0.6279

R2
exp 0.4191 0.6672 0.8417 0.2844 0.5760 0.6771 0.3422 0.4755 0.6289

R2
poly2 0.4161 0.6907 0.8429 0.3319 0.6117 0.6975 0.3293 0.4858 0.6337

R2
poly3 0.4162 0.6923 0.8438 0.3326 0.6291 0.7095 0.3310 0.4929 0.6357

RMSE 0.1874 0.1435 0.0962 0.2070 0.1891 0.1926 0.2156 0.2089 0.1925
d 0.2717 0.0049 0.0147 0.2987 0.3720 0.5990 0.2780 0.3434 0.4738

The most accurate statistical values per suitability result are bolded. R2lin: R2 from linear regression; R2log: R2

from logarithmic regression; R2exp: R2 from exponential regression; R2poly2: R2 from second-order polynomial
regression; R2poly3: R2 from third-order polynomial regression; RMSE: root mean square error, d: Cohen’s d index.

Visual representation of regression functions that produced the highest coefficient of determination
per model is presented in Figure 6. The similarity of stepwise and fuzzy standardization with soil
and combined criteria results can be observed, with fuzzy models resulting in slightly smaller
dispersion. RMSE values showed similar results, as fuzzy methods produced lower RMSE than
stepwise standardization for both soil (difference 0.0456) and combined criteria group (difference
0.0964). Climate criteria resulted in the lowest sensitivity to the selected standardization method,
having closely distributed values for all applied standardization methods. The third-order polynomial
regression function resulted in the highest R2 in the validation of all soil and combined criteria.
The exponential function most accurately represented the relationship of suitability and peak NDVI
values for climate criteria with fuzzy and linear standardization methods.

Shares of suitability classes calculated using k-means unsupervised classification regarding the
covered area are shown in Table 8. According to the most accurate suitability values calculated using
fuzzy standardization and combined criteria, 64.3% of the study area is suitable for soybean cultivation
to some degree. The S1 class covers 602 km2 of the county area. The area determined as very suitable
covers three major parts: the eastern part near Dalj, mainly characterized with high average minimal
air temperatures; the northeastern part by the Baranja hill with optimal C/N values, pH and SoilType
values; and the central-south part by the city of Đakovo with suitable SoilTexture and SoilType values.
The final suitability maps after the removal of constrained areas from the unsupervised classification
results are shown in Figure 7. The most accurate suitability model was exported to vector Shapefile
and raster GeoTIFF format.
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Table 8. Shares of suitability classes for calculated models from unsupervised classification.

Model S1 (%) S2 (%) S3 (%) N1 (%) N2 (%)

Fuzzy
standardization

Climate 13.1 25.5 26.2 23.2 12.0
Soil 23.6 14.7 30.5 21.7 9.5

Climate + Soil 14.5 22.2 27.6 22.5 13.2

Stepwise
standardization

Climate 33.4 26.9 3.6 27.5 8.6
Soil 19.1 23.0 15.9 18.5 23.5

Climate + Soil 9.2 26.3 25.0 20.9 18.6

Linear
standardization

Climate 16.8 23.5 24.6 24.9 10.2
Soil 19.2 20.5 21.6 15.4 23.3

Climate + Soil 18.6 25.5 23.9 17.1 14.9

Suitability classes: very suitable (S1), moderately suitable (S2), marginally suitable (S3), currently
unsuitable (N1) and permanently unsuitable (N2).
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The correlation matrix of all combinations of calculated suitability models (Table 9) showed a
constantly high correlation of suitability values calculated using soil and combined criteria for all three
standardization methods. Suitability values using climate criteria produced a moderate correlation
with combined criteria values. A high correlation was achieved for fuzzy and stepwise standardization
with combined criteria, which produced two most accurate suitability values.

Table 9. Correlation matrix between calculated suitability models.

FC FS FCS SC SS SCS LC LS LCS

FC 1.000 0.285 0.578 0.578 0.278 0.396 0.718 0.242 0.520
FS 1.000 0.947 0.343 0.909 0.892 0.313 0.779 0.736

FCS 1.000 0.486 0.866 0.891 0.506 0.743 0.799
SC 1.000 0.333 0.555 0.493 0.292 0.452
SS 1.000 0.969 0.326 0.901 0.834

SCS 1.000 0.415 0.870 0.853
LC 1.000 0.294 0.689
LS 1.000 0.895

LCS 1.000

FC: fuzzy standardization-climate criteria, FS: fuzzy standardization-soil criteria, FCS: fuzzy
standardization-combined criteria, SC: stepwise standardization-climate criteria, SS: stepwise standardization-soil
criteria, SCS: stepwise standardization-combined criteria, LC: linear standardization-climate criteria, LS: linear
standardization-soil criteria, LCS: linear standardization-combined criteria.
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4. Discussion

Linear standardization was proven to be less effective in adjusting to standardization specifications
for nearly all quantitative criteria. This occurred due to the linear standardization’s property of
monotonous ascending or descending of standardized values in the specified number interval.
Therefore, nonlinear varying standardization requirements of Precipitation, SolarIrradiation, Tavg,
Tmax, AirHumidity, pH and TWI could not be fully adjusted. However, linear standardization
performed as the second-best standardization method for climate criteria, as few extreme values were
present in these criteria. Stepwise standardization allowed high subjective impact on standardized
results due to the ability to join the arbitrary input value ranges to standardization classes. These classes
were discretely defined, with no intermediate values between classes. The most important property of
the stepwise standardization method was the ability of the standardization of qualitative criteria, which
presents a necessity for the integration with quantitative criteria. Fuzzy standardization methods
allowed the best adjustment of standardized values to the crop expert’s specifications for quantitative
criteria, consequentially resulting in the highest accuracies of suitability models. Aside from setting
the intervals of least and most favorable input values, the crop expert also had supervision over
the intensity of increasing and decreasing the standardized values by selecting the optimal fuzzy
model. Sigmoidal and J-shaped membership functions were also recognized as the most convenient
for the standardization of similar criteria in a study by Aydi et al. [89]. Investigated properties of
fuzzy standardization proved that it could be used as a universal standardization method, possibly
upgrading the calculation of suitability values where linear and stepwise standardization were
previously combined [74]. The FAO guidelines offered a standard for the delineation of suitability
classes, which enables a comparison between similar suitability models. These standards were applied
in many studies regarding suitability analyses recently [10,15,78]. The creation of suitability classes
is considered as a necessary procedure in effective land management in similar studies. They were
previously used in suitability analyses regarding crop cultivation and irrigation [99].

Suitability models calculated with the combined criteria group produced the highest accuracy,
showing the importance of climate and soil criteria groups in crop-related suitability analysis. A low
correlation between models using only climate and soil criteria was observed for all standardization
methods. Climate and soil criteria groups were both necessary for reliable suitability calculation [7,102].
The possible reason for the lower accuracy of suitability models that used climate criteria compared to
soil or combined criteria is a relatively small study area (4,155 km2), causing low variability for selected
climate criteria. Precipitation produced the highest variability of all data from weather stations, with a
CV of only 0.100. However, climate data was considered as mandatory criteria group especially in
the case of the larger study area, having an impact on high suitability values for combined criteria.
Many recent studies successfully integrated GIS-based multicriteria analysis with AHP as a weight
determination method for crop suitability calculation [11,25,80,83,84]. Besides weight determination,
three modifications of AHP in this study enabled the determination of the reliability of input data
used for the modeling of criteria per criteria groups. The combined criteria group produced the
highest accuracy for all standardization methods. Fuzzy and stepwise standardization methods also
produced moderate accuracy using soil criteria, while climate criteria produced the lowest accuracy.
Linear standardization produced similar accuracies for all AHP modifications. Fuzzy standardization
resulted in higher accuracy using the combined criteria group than the other two methods, due to better
adjustment of values to the crop expert’s specifications in the standardization process. All interpolation
methods performed better in case of less variable climate data compared to soil data. OK usually
outperformed IDW in studies comparing interpolation methods for soil and climate data but has some
limitations regarding normality and stationarity of input samples [103]. IDW outperformed OK in case
of low normality and high variability of sample data [104]. Kriging was unable to produce quality
results in when its prerequisites of sample data normality and stationarity were not met in a different
study, where IDW resulted in higher accuracy [25]. This emphasizes the importance of the selection of
optimal interpolation method in similar studies as it depends on the properties of input samples [105].
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No standard methodology of crop suitability values validation calculated by GIS-based
multicriteria analysis was noted during the literature review. Moreover, the majority of these studies
did not employ any validation procedure for crop suitability results [11,25,51,83,84,89]. Multitemporal
NDVI offers a potential solution in the validation of crop suitability, due to its global accessibility from
global multispectral satellite missions (Sentinel-2, Landsat 8) and being a reliable predictor of various
crop properties [92]. Moreover, Sentinel-2 derived NDVI was a reliable predictor in a study of crop
yield and was superior to other individual tested vegetation indices [106]. The applicability of NDVI
was expanded in this study as it enabled an effective validation of suitability models, primarily due to
the objective assessment of all major soybean varieties using peak NDVI values. An application of
NDVI in the validation of wheat suitability combined with yield data was successfully made in a study
by Dedeoğlu and Dengiz [107]. However, the application of peak NDVI values that were used for direct
validation of suitability values before their classification in suitability classes represents a significant
improvement for its applicability in suitability validation. Data about conducted agrotechnical
operations (sowing, fertilization, spraying) for every test soybean parcel remain an ambiguity and
could affect the reliability of validation using peak NDVI. Fertilization is traditionally balanced in the
entire study area, but its exact effect on NDVI values for validation remain to be tested. Soybean satisfies
around 60% of its nitrogen requirements by nitrogen fixation [108], which is one of the reasons for
farmers in the study area to apply conventional fertilization without conducting detailed soil analysis
commonly. Therefore, nitrogen fertilization was not expected to have a significant impact during
validation using NDVI. The effect of pests, diseases and weather trend on crop status prevent NDVI
from being fully reliable validation data, as vegetation depends on numerous individual factors [109].
A relatively small study area partially reduced the effects of weather conditions, having low variability.
The averaging of NDVI values from soybean parcels to centroids allowed the lower impact of potentially
affected areas by pests or disease. A possible solution for the mentioned restrictions is the integration
of multiple complementary vegetation indices for validation, as the spectral resolution of Sentinel-2
allows for the calculation of most known vegetation indices [110]. The Soil-Adjusted Vegetation Index
(SAVI) is considered as one of the complementary indices to NDVI, as it minimized the soil brightness
effect in areas with sparser vegetation in a comparable study [111]. Of the four Sentinel-2 images used
for the calculation of peak NDVI, the dataset sensed on 8 August 2019 produced the lowest amount of
peak NDVI values due to the lack of precipitation at the beginning of the month. This case implies the
importance of considering meteorological conditions for adjustment of the time frame for validation.
The validation time frames should be slightly calibrated for each growing season, as drought could
accelerate the ripening process of soybean, therefore lowering the vegetation indices values.

While the simplicity and effectiveness of the weighted linear combination for criteria aggregation
were previously mentioned and successfully applied, the Ordered Weighted Averaging (OWA) method
offers a potential upgrade to the applied methods. Its potential in GIS-based multicriteria analysis is
primarily notable through the integration of fuzzy measures in the criteria aggregation process [112].
OWA was successfully applied for suitability analysis of crops in combination with AHP [113] and
multicriteria analysis regarding soil chemical properties in combination with IDW as the interpolation
method [114]. The majority of applied methods for GIS-based multicriteria analysis in this study
support the automatization of the calculation process, which will be a subject of future research. Inputs
consisting of criteria selection, pairwise matrix comparison and standardization specifications should
be assigned at the beginning of the algorithm. The main benefits of automatization in this research
were noticeable during the process of soil texture map calculation, which are time-efficiency and
easier applicability of the process to future calculations [78]. Automatization is considered as a major
property for making the GIS-based methods and algorithms considerably more applicable in regular
practice [115]. Since the user does not have to conduct each process in the GIS environment manually,
the accessibility of automated methods expands to users with limited knowledge of geospatial data.

The addition of the ecological criteria group to the multicriteria analysis presents a possibility for
the improvement of the present study. Aside from the ecological criteria group, the proposed method
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supports the addition of multiple other criteria groups through the creation of additional pairwise
comparison matrices, as long as the number of criteria per group satisfies specifications by Saaty and
Ozdemir [53].

5. Conclusions

Soybean suitability values were calculated based on agronomist specifications in this study,
resulting in maps of soybean suitability classes, as a base for land policy managers to improve
soybean quality and reduce production costs. This was achieved by the determination of soybean land
suitability using GIS-based multicriteria analysis and AHP. During the standardization process, it was
observed that the fuzzy standardization method allowed the best adjustment of standardized values to
soybean land suitability specifications. The separation of criteria for soybean suitability calculation
to climate and soil groups allowed weight determination according to specifications of AHP. This
approach also reduced the redundancy of criteria in the process of pairwise comparison matrices
creation. The authors recommend the evaluation and selection of optimal interpolation methods
for the preprocessing of input criteria when applicable, as was the case with the most influential
criteria in this study. The validation method using Sentinel-2 derived peak NDVI values enabled the
determination of the most accurate suitability model. The calculation of peak NDVI values based on
four independent NDVI values allowed the objective determination of peak biomass for all major
soybean varieties. This procedure was also proven to be robust regarding the cloud cover on satellite
images since validation does not depend on the individual images. Fuzzy standardization resulted
in the most accurate standardization method combined with all three criteria groups. The suitability
model using fuzzy standardization with a combined criteria group produced the highest R2 and
RMSE from nine calculated suitability values. According to suitability classes created by unsupervised
classification of the most accurate suitability values, 64.3% of the study area was determined as suitable
for soybean cultivation in some degree. The most suitable class for soybean cultivation covered 14.5%
of the study area, an equivalent of 602 km2 in the field. Three regions of highest suitability for soybean
cultivation were observed in the suitability map: the eastern part near Dalj, the northeast part by the
Baranja hill and the central-south part by the city of Đakovo. The export of final suitability maps to
common raster and vector formats were performed for effective knowledge sharing to agricultural
land policy managers.
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Abstract: Soil texture is a vital criterion in most cropland suitability analyses, so an accurate method
for the delineation of soil texture suitability zones is necessary. In this study, an automated method
was developed and evaluated for the delineation of these zones for soybean cultivation. A total
of 255 soil samples were collected in the Continental biogeoregion of Croatia. Three methods for
interpolation of clay, silt and sand soil content were evaluated using the split-sample method in
five independent random repetitions. An automated algorithm for soil texture classification based
on the United States Department of Agriculture (USDA) in 12 classes was performed using Python
script. Suitability classes for soybean cultivation per soil texture class were determined according to
previous agronomic and soybean land suitability studies. Ordinary kriging produced the highest
accuracy of tested interpolation methods for clay, silt and sand. Highly suitable soil texture classes
for soybean cultivation, loam and clay loam, were detected in the northern part of the study area,
covering 5.73% of the study area. The analysis of classification results per interpolation method
indicated a necessity of the evaluation of interpolation methods as their performance depended on
the normality and stationarity of input samples.

Keywords: automation; classification; interpolation; GIS; python script; kriging; split-sample
validation

1. Introduction

Knowledge of naturally suitable locations for the cultivation of a particular crop type is a basis for
effective natural resource management and sustainable agriculture [1]. The development of spatial
models of cropland suitability analyses integrated with geographic information system (GIS) enabled
decision-makers to develop a crop management system that increases yield and land productivity [2].
The selection of the relevant criteria is based on crop and site-specific requirements, typically compiled
from previous studies or crop expert surveys in the study area. Land suitability analysis commonly
integrates climate and soil criteria groups of specific land use [3]. Soil texture presents a vital criterion in
the GIS-based soybean suitability analyses for the determination of locations with the highest potential
yield increase [4,5]. Many soil physical and chemical properties are directly influenced by soil texture,
affecting soil fertility and productivity [6,7]. Recent research proved the direct influence of soil texture
on the important segments of the ecosystem, such as agricultural yield variability [8], soil microbial and
structural recovery [9] and richness and diversity of soil bacterial communities [10]. Automation of
classification algorithms allows more time-efficient and robust classification in comparison to the
conventional manual approach [11]. Recently developed algorithms for soil classification cover a wide
range of applications, most notably measurement of soil surface roughness [12], prediction of soil
fertility [13] and estimation of degraded soils [14]. In addition, mapping of soil texture variability
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in both horizontal and vertical dimensions has been a subject of interest in previous studies [15,16].
The mapping of the GIS analysis results presents an effective tool in their distribution to the end-users,
both for farmers on a large scale, as well as for land policy managers on a small (regional) scale.
Such data representation does not require extensive knowledge of spatial data and therefore allows
simple interpretation, especially when integrated into web GIS maps.

Interpolation overcomes the limited representation of the agricultural soil properties by discrete
soil sampling. Instead, it incorporates these ground-truth data to predict soil properties and enable a
continuous representation of the entire agricultural field [17]. Interpolation methods are generally
divided into geostatistical and deterministic methods. According to [18], geostatistical interpolation
methods model the uncertainty associated with a spatial estimation based on random function theory,
while the deterministic methods use only the input sample values and mathematical functions for
interpolation. Geostatistical methods also apply statistical functions to quantify the predictions’
uncertainty, in contrast to deterministic interpolation methods. The basic step in the implementation
of the geostatistical interpolation methods is the variogram analysis for the fitting of the most suitable
theoretical mathematical model to an empirical variogram [19]. The evaluation of the interpolation
methods enables the selection of the optimal, most accurate interpolation method for a particular soil
sample [20]. The interpolation accuracy of soil samples has a direct impact on the creation of land-use
management plans and variable-rate applications in precision agriculture [21].

Soybean (Glycine max L.) is the main oilseed crop in the world, presenting a high-quality source
of oil and protein [22,23]. The long-term projection by [24] predicts a 1.3% global annual increase of
soybean yield, which does not meet the food demands in the world. The development of soybean
suitability analyses is therefore necessary for the improvement of soybean yield, especially to land
policy managers [25]. A study by [26] noted the importance of soybean introduction in the cropping
system, allowing the effective exploitation of soil nutrients and the overall reduction of pesticides and
herbicides in precision agriculture. Soil texture is proven to have a significant impact on soybean
cultivation and yield [27,28]. Improvement of research regarding soybean yield enhancement and
sustainability is essential to satisfy growing soybean global demands [29].

The purpose of this study was to delineate soil texture suitability zones for soybean cultivation
using an automated soil texture classification algorithm in a GIS environment. The specific objectives of
the study were to: (1) evaluate and select the most accurate method for the interpolation of clay, silt and
sand from input samples, (2) automate the process of soil texture classification in a GIS environment
and (3) provide a map of soil texture suitability zones for soybean cultivation at a regional scale.

2. Materials and Methods

2.1. Study Area

The study area is the Continental biogeoregion of Croatia, covering 30,863 km2 and being one
of the three national biogeoregions defined by the European Environment Agency [30] (Figure 1).
The other two biogeoregions present in Croatia are alpine and Mediterranean biogeoregions. The study
area is characteristically a moderately warm, rainy climate, as per Köppen’s classification. Soybean is
gradually becoming one of the most produced crops in Croatia, with a 119% yield production increase
between 2013 and 2016 as per Croatian Bureau of Statistics data. The terrain is dominantly lowland,
at lower elevations. According to CORINE 2018 land cover data, agricultural areas represent the major
land cover class with 54.0% of the study area. The second-largest land cover classes are forests and
seminatural areas with 40.7% of the study area, followed by artificial surfaces (3.5%), water bodies
(1.4%) and wetlands (0.5%).
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Figure 1. Continental biogeoregion of Croatia.

2.2. Automated Classification for Delineation of Soil Texture Suitability Zones for Soybean Cultivation in a
GIS Environment

The selected interpolation methods for evaluation in this research were ordinary kriging (OK),
inverse distance weighted (IDW) and spline interpolation (SI). These methods were recommended
for the interpolation of soil properties by [31]. The workflow of this research is shown in Figure 2.
All spatial calculations in this study were conducted using open-source GIS software: SAGA GIS v7.4.0
for the samples pre-processing and spatial interpolation and QGIS v3.8.3 for interpolation results and
soil texture map visualization. Python v3.7.4 was used for scripting as a base for the automation of
soil texture classification. The selected coordinate reference system (CRS) was the Croatian Terrestrial
Reference System (HTRS96/TM). The spatial resolution of interpolated rasters was set to 250 m.

Input soil sample data was downloaded using the Croatian Agency for the Environment and
Nature soil data WFS service. Soil samples were collected in the field according to ISO 11272:2017 and
were pre-treated according to ISO 11464:2006 [32]. A total of 255 samples were collected in the study
area during the year 2016. The soil texture content was determined by sieving and the sedimentation
method prescribed in ISO 11277:2009. Soil fractions (<2 mm) were reclassified to three classes regarding
particle size: clay (<0.002 mm), silt (0.002–0.063 mm) and sand (>0.063 mm). Each soil sample collected
in the field represented a set of clay, silt and sand data on the same location. These values were
filtered by attributes from input samples into a separate vector point layer in a GIS environment.
The split-sample method was applied for the creation of training and test datasets, randomly splitting
input samples to training data (70%) and test data (30%). From the total of 255 collected soil samples
in the study area, 179 training samples and 76 test samples were randomly split from the original
set individually for each repetition. The split-sample method was performed in five independent
repetitions, resulting in five training and five corresponding test sample sets. Descriptive statistics
consisting of mean, standard deviation (SD), coefficient of variation (CV), skewness (SK) and kurtosis
(KT) were calculated to quantify normality and stationarity of the training sets. These properties
are regarded as necessary for the determination of interpolation parameters for each method [33].
Normality designated the distribution of sample values, quantifying its deviation to normal distribution.
Stationarity represented the number of local variations in the sample values, where low local variations
indicate higher stationarity. Input data normality and stationarity are regarded as necessary indicators
for the selection of optimal interpolation parameters [34].



Agronomy 2020, 10, 823 4 of 22

Agronomy 2020, 10, x FOR PEER REVIEW 4 of 22 

 

 
Figure 2. Research workflow for the delineation of soil texture suitability zones for soybean 
cultivation. 

OK is the most commonly used geostatistical interpolation method and is thoroughly described 
in [19,35]. It is also considered as the best linear unbiased spatial predictor [36]. OK incorporates a 
variogram as a tool for the modelling of spatial dependence between the input sample values and the 
mutual distance of samples [37]. The variogram was modelled based on (1): 

γ(h) = 
1

2N
෍ [Z(x) – Z(x + h)]2

N

x=1
, (1) 

Figure 2. Research workflow for the delineation of soil texture suitability zones for soybean cultivation.

OK is the most commonly used geostatistical interpolation method and is thoroughly described
in [19,35]. It is also considered as the best linear unbiased spatial predictor [36]. OK incorporates a
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variogram as a tool for the modelling of spatial dependence between the input sample values and the
mutual distance of samples [37]. The variogram was modelled based on (1):

γ(h) =
1

2N

N∑
x=1

[Z (x) – Z(x + h)]2, (1)

where γ(h) is the semivariance, N is the number of sample pairs and Z(x) and Z(x + h) are the
observation values at point x and at a point separated by h.

IDW is a deterministic interpolation method that predicts the values based on a weighted average
of the input samples. The weights were assigned to each sample in an inversely proportional way to
the distance from the predicted location [38]. The prediction principle of IDW is outlined in detail
in [39].

SI is the deterministic interpolation method that performs the spatial interpolation by using
the polynomial functions for describing the components of the interpolated area. Mutual fitting of
those functions is performed, so that they join smoothly, consequentially resulting in the smooth
representation of the interpolated area [17]. SI performs best in the case of gently varying surfaces,
which is commonly associated with samples with high stationarity [31].

The three selected interpolation methods were applied to five randomly created training sets,
resulting in 15 interpolation variations separately for clay, silt and sand soil content. The selection
of interpolation parameters for all three interpolation methods was performed according to the
evaluated normality and stationarity of the training sets. The existence and the range of the spatial
variability of training samples and full samples were observed using Moran scatterplots, Moran’s I
values and autocorrelograms [40]. All three tested interpolation methods were implemented in SAGA
GIS software. OK was conducted with logarithmic transformation in the pre-processing due to lack
of normal distribution of sample values for all soil parameters, as proposed by [41]. The starting
parameters used for OK interpolation of training sets and final interpolation using full sample sets
were a range of 170,000 m with 25 lags, with each lag covering a distance of 6800 m. Tested theoretical
mathematical models for fitting to the empirical variogram were linear, square root, logarithmic,
Gaussian and spherical. The selection of these models and corresponding ranges was performed
based on the highest fitting coefficient of determination to the empirical variogram in ranges with
existing spatial autocorrelation. The interpolation by the IDW method was performed by using
the power parameter of 3 to prevent the emphasis of local variations in the interpolation results,
due to moderate stationarity of training sets. SI was conducted by the thin plate spline process to
ensure the smoothing of the interpolated surface to decrease the impact of higher local variabilities
of the input samples [42]. The ranges of deterministic interpolation methods were selected based
on observed spatial autocorrelation, amounting to maximum distances with continuous positive
autocorrelation values.

Final clay, silt and sand soil content raster were interpolated with the full input sample data,
using the most accurate interpolation method determined during accuracy assessment. Soil texture
classification was performed in 12 classes according to the specifications of the United States Department
of Agriculture (USDA) [43]. The classification process was automated using the algorithm realized
in Python script (Figure 3, Appendix A). The automation in the GIS environment was developed to
perform classification robustly and independently of the CRS, location extent, or spatial resolution of
input rasters.
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2.3. Accuracy Assessment of Interpolated Rasters

Accuracy assessment of the selected interpolation methods was conducted by the calculation
of coefficients of determination (R2) and root-mean-square error (RMSE) for all interpolated rasters.
These statistical values are considered as complementary for the evaluation of interpolation results for
soil parameters [44]. The R2 quantified fitting of interpolated values to the regression line, while RMSE
was used to assess variation in data based on absolute fit. The R2 values were calculated using a linear
regression model. The higher R2 and lower RMSE indicate a better model fitting. Formulas for the
calculation of R2 (2) and RMSE (3) were [45]:

R2= 1 –

∑n
1 (y i – ŷi

)2

∑n
1 (y i – yi

)2 , (2)
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1
n
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where yi is the measured (sampled) value, ŷi is the predicted value, yi is the average of the measured
value y, and n is the number of observations.

2.4. Determination of Soybean Suitability Zones According to Soil Texture Classes

Loamy soil is the most suitable for the majority of crops, generally containing more organic soil
matter and retaining moisture and nutrients better than other soil textures [46]. Levels of the suitability
of 12 soil texture classes for soybean cultivation were evaluated based on previous soybean-specific
agronomic and land suitability studies. Soybean-specific agronomic studies that evaluated the effects of
soil texture for various applications in soybean cultivation are shown in Table 1. All evaluated studies
noted a higher level of suitability for loamy textures compared to other classes present in the study area.
Loamy soil textures with higher silt or clay content were regarded as more suitable compared to higher
sand content, such as sandy loam or loamy sand. Recent studies based on GIS-based multicriteria
land suitability for soybean cultivation containing soil texture as an influential criterion are shown
in Table 2. The suitability of soil texture classes was natively represented according to Food and
Agriculture Organization (FAO) specifications [47] or adjusted to this specification from original classes.
FAO specifications for land suitability consist of five suitability zones: highly suitable (S1), moderately
suitable (S2), marginally suitable (S3), marginally not suitable (N1) and permanently not suitable (N2).
Similar to agronomic studies, loamy textures were considered as the most suitable, with clay loam and
loam being regarded as highly suitable. Suitability levels generally decreased with the increase of clay,
silt or sand soil contents. The final classification of soil texture suitability zones for soybean cultivation
was performed according to FAO specifications and is presented in Figure 4.

Table 1. Soil texture suitability for various applications from previous soybean-specific studies.

Source Soil Texture Classes in the Study Application

[48] loamy sand, sandy loam, silt loam Nitrous oxide emission in agricultural fields
[49] loamy sand, sandy clay loam Cyst nematode population density
[50] sandy loam, silty clay loam Yield response to salinity

[51] loamy textures, sandy textures, clay textures Effect of root zone temperatures on
interorganismal signal molecules

[52] loamy textures, clay textures, sandy textures Carbon and nitrogen mineralization
[53] clay, sandy clay loam Canopy dry matter production

[54] sandy loam, silt loam, loam, sandy clay
loam, clay loam, silty clay loam, clay

Incidence of brown stem rot in
conservation-till fields

The most suitable soil texture classes per study were bolded.

Table 2. Soil texture suitability for soybean cultivation from previous GIS-based multicriteria analysis studies.

Source
Suitability Level for Soybean Cultivation

S1 S2 S3 N1 N2

[55] loam sandy loam, clay loam,
silt loam

sandy clay,
silty clay

other
classes sand

[56] loam, clay loam, silty
clay loam, silt loam

sandy loam, clay, silty
clay, silty clay loam loamy sand, silt sand

[57] silt loam, silty clay
loam, loam sandy clay loam sandy loam / /

[58] silty clay loam, sandy
clay loam, clay loam

loam, silt, silty loam,
sandy clay, silty clay

sandy loam,
clay loamy sand sand

[59] clay loam sandy clay loam loamy sand sandy loam /
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3. Results

Descriptive statistics used for the estimation of training sample sets’ normality and stationarity
are shown in Table 3. Silt soil content was observed as the dominant soil texture parameter in the
study area, followed by clay. Clay and silt soil content data resulted in similar CV values through
all five repetitions, representing low-variance data. Sand soil content produced CV values higher
than 1.100 in all repetitions, indicating a high-variance data. SK remained consistent for all three
soil parameters through repetitions. Clay and silt soil content resulted in right-tailed and left-tailed
moderate skewness, respectively. Sand soil content consistently produces the highest SK values of all
soil parameters, indicating a highly skewed data. KT resulted in the most variability of the calculated
descriptive statistics for all soil parameters. However, values in all repetitions indicated a considerable
platykurtic distribution for clay and silt soil contents and a considerable leptokurtic distribution for
sand soil content. Sand soil content data values indicate a highly skewed distribution and moderate
data stationarity.

The Moran scatterplot per training set is shown in Figure 5. Positive spatial autocorrelation was
observed for all three soil parameters, with mean Moran’s I resulting in 0.396, 0.259 and 0.333 for clay,
silt and sand, respectively. Interpolation ranges for IDW and SI per training sample set are presented
in Appendix B. Mean distances until negative autocorrelation values were 81,600 m for clay, 29,920 m
for silt and 54,400 m for sand. Variograms and interpolation parameters using OK for five training
sample sets are presented in Appendix B. Square root and Gaussian theoretical mathematical models
allowed the best fitting on most occasions, being applied 6 times each.
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Table 3. Descriptive statistics of random training sample sets.

Set No. Soil Parameter Mean (%) CV SK KT

Clay 30.997 0.368 0.678 0.228
Set 1 Silt 58.141 0.223 −0.760 0.833

Sand 10.862 1.207 2.322 6.515

Clay 31.355 0.332 0.584 0.336
Set 2 Silt 57.945 0.211 −0.599 0.391

Sand 10.701 1.150 2.065 5.093

Clay 29.889 0.343 0.581 0.159
Set 3 Silt 57.958 0.225 −0.800 0.874

Sand 12.153 1.141 2.060 4.861

Clay 29.899 0.354 0.633 0.334
Set 4 Silt 58.276 0.225 −0.805 0.860

Sand 11.826 1.173 2.116 5.000

Clay 30.795 0.353 0.594 0.241
Set 5 Silt 57.305 0.228 −0.688 0.674

Sand 11.900 1.151 2.082 5.050

Clay 30.587 0.350 0.614 0.260
Mean Silt 57.925 0.222 −0.730 0.726

Sand 11.488 1.164 2.129 5.304
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OK resulted in the highest mean RMSE and R2 values for all soil parameters and was determined
as the most accurate interpolation method in this study (Table 4). It was followed by IDW as the
second most accurate method according to both statistical values, while SI was the least accurate
interpolation method. The interpolation results within the same soil parameter and interpolation
methods generally produced high variability in accuracy values. Most notably, the difference between
maximum and minimum values for RMSE was 2.26 for clay interpolation using SI, while R2 was 0.353
for the interpolation of clay using IDW. All three interpolation methods produced the highest accuracy
for the interpolation of sand, followed by clay and silt soil contents.
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Table 4. Accuracy assessment of the evaluated interpolation methods per soil parameter.

Set No. Stat. Value
OK IDW SI

Clay Silt Sand Clay Silt Sand Clay Silt Sand

Set 1
RMSE 1.85 3.04 1.79 3.13 2.91 2.51 3.50 4.80 3.79

R2 0.786 0.632 0.740 0.456 0.560 0.645 0.490 0.328 0.444

Set 2
RMSE 2.01 1.80 1.52 2.51 2.06 2.68 3.19 4.15 2.90

R2 0.733 0.727 0.846 0.720 0.703 0.680 0.475 0.437 0.597

Set 3
RMSE 2.70 3.59 1.60 3.00 3.28 3.28 5.50 3.85 3.77

R2 0.655 0.469 0.842 0.598 0.422 0.537 0.313 0.385 0.497

Set 4
RMSE 2.78 3.08 2.45 2.75 2.58 2.62 3.24 3.27 2.61

R2 0.538 0.630 0.673 0.552 0.632 0.637 0.441 0.472 0.528

Set 5
RMSE 2.13 3.98 1.70 1.81 3.14 2.42 4.03 3.66 2.40

R2 0.788 0.503 0.820 0.809 0.528 0.710 0.446 0.392 0.580

Mean
RMSE 2.29 3.10 1.81 2.64 2.79 2.70 3.89 3.94 3.09

R2 0.700 0.592 0.784 0.627 0.569 0.642 0.433 0.403 0.529

Autocorrelogram and OK interpolation parameters of full sample sets are shown in Figure 6.
Deterministic interpolation methods were performed with maximum ranges of 81,600 m for clay,
27,200 m for silt and 68,000 m for sand, matching maximum distances with positive autocorrelation.
The specific local variabilities of the interpolation results were analysed according to Figure 7.
OK produced interpolation results with low extreme values, compared to IDW and SI results.
Consequentially, local variability in all soil fractions was minimized in interpolation results.
Generalization of the local variabilities for OK is particularly noticeable in the south-west part
of the study area for sand soil content interpolation. IDW results displayed the effects of all local
variabilities to some degree but restricted their impact on interpolated results on local surroundings of
the training samples. SI was the most balanced interpolation method considering the effects of local
variabilities. The effects of local variations were retained in the interpolation results, having higher
impacts on the surroundings of the training samples than IDW.
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Histograms of interpolation results enabled quantification of the effect of local variabilities in the
interpolation results (Figure 8). IDW resulted in the narrowest value interval of the tested interpolation
method while having the top frequency value for every soil parameter. In contrast, SI produced the
most variability regarding the interpolation values interval. Standard deviations of sand interpolation
resulted in the greatest variability, with 7.91 for OK, 9.90 for IDW and 12.80 for SI.
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The correlation matrix of tested interpolation methods for the respective soil fractions is displayed
in Table 5. The maximum correlation was achieved for silt interpolation between IDW and SI. The lowest
correlation was observed between OK and SI for both clay and sand interpolation. The visualization
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of classified soil texture in soil texture triangles is performed in Figure 9. OK produced the lowest
dispersion of soil texture classes, dominantly covering silty clay loam and silt loam. IDW and SI
covered a slightly wider range of soil texture classes. This observation particularly refers to loam,
which is present in ground truth data (255 soil samples), but under-classified by OK. Both deterministic
methods showed a notable presence of results in silty clay and clay loam classes, however, these classes
had a low presence in ground truth data.

Table 5. Correlation matrix of interpolation results using Pearson’s coefficient of correlation.

Clay Silt Sand

OK IDW SI OK IDW SI OK IDW SI

OK 1.000 1.000 1.000
IDW 0.869 1.000 0.826 1.000 0.818 1.000

SI 0.775 0.868 1.000 0.803 0.914 1.000 0.726 0.869 1.000
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The interpolation of final clay, silt and sand soil fractions was performed by OK, as the most
accurate interpolation method, with all 255 input samples. The results of the soil texture classification
using Python script are displayed by coverage per soil texture class (Table 6). Loam and clay loam,
as the two most suitable soil texture zones for soybean cultivation, were detected in the northern part
of the study area, mostly covering the border area near the river Drava. Silt loam and silty clay loam,
the two moderately suitable zones, covered 88.22% of the study area. Silty clay, as the only marginally
suitable zone, was mostly present in the south-east on the study area. The soybean suitability thematic
map according to soil texture classes is shown in Figure 10.

Table 6. Coverage per soil texture class in the study area.

Coverage Silty Clay Silty Clay Loam Clay Loam Loam Sandy Loam Silt Loam

Area (%) 6.04 53.26 0.99 4.74 0.01 34.96
Area (km2) 1861 16,412 306 1460 2 10,773
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4. Discussion

The first objective of the study regarding the selection of the most accurate interpolation
method was fulfilled by accuracy assessment based on five independent random split samples.
Clay and silt possessed values moderately deviated from a normal distribution and moderate data
stationarity, while sand possessed highly skewed values. Previous studies [60–63] suggested that
these cases are common in analyses of soil properties, so the transformation of skewed data was
determined as a necessary procedure in the algorithm. The application of logarithmic transformation
in the pre-processing to OK minimized the effect of skewed distribution, as suggested by [64].
The descriptive statistics of clay, silt and sand in this study suggest that the thresholds for performing
logarithmic transformation could be CV > 0.500 as the first condition, and the second condition that
SK and KT deviate 0.500 or more from values of the normal distribution sample of zero and three,
respectively. However, it is necessary to test this assumption on the different soil samples to evaluate
its reliability. Similar studies imply the applicability of statistical tests like the Shapiro–Wilk [65] or
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Kolmogorov–Smirnov test [66] for the evaluation of data normality and could present an upgrade
to the soil classification algorithm in future research. Sparse sampling density of one sample per
118 km2 used in this study is expected to have an impact on overall interpolation accuracy results.
Denser soil sampling is expected to result in the lower CV of soil parameter values [67] and more
accurate interpolation results [68,69]. However, the mapping of soil properties on a large scale was
successfully performed using low-density samples, using one sample per 199 km2 in [70] and even
one sample per 443 km2 in [71]. Due to the structure of the workflow and automatic soil texture
classification algorithm in a GIS environment, a similar performance is expected by adding more
samples in the existing area or using the same number of samples on a smaller area. Slightly more
time-expensive computation in these cases is the only notable difference expected, as more input data
should be processed.

The highest fitting R2 values for OK were achieved on shorter distances with full sample sets
(71,400 m, 54,400 m and 44,200 m, compared to 84,320 m, 69,360 m and 119,680 m) in contrast to
mean values of five training sample sets, which correspond better to observed spatial autocorrelation.
OK was determined as the most accurate interpolation method for all three soil fractions, with R2

ranging from 0.592 to 0.784 and RMSE from 1.81 to 3.10. IDW was the second most accurate method,
resulting in the most uniform accuracies through the interpolation repetitions. Moderate interpolation
accuracies imply the necessity for denser soil samples in soil texture classification on a national
level [72]. Sampling using regular grids proved in most cases to be the optimal suitable field sampling
method [73]. The evaluation of interpolation methods displayed the importance of testing multiple
methods. Mean R2 differences between OK as the most accurate and SI as the least accurate methods
were 0.267 for clay, 0.189 for silt and 0.255 for sand. Mean RMSE differences showed the same trend,
amounting to 1.60 for clay, 0.84 for silt and 1.28 for sand. The correlation matrix supported the previous
statement, as the lowest correlation was observed between OK and deterministic interpolation methods,
especially SI. OK also produced the most accurate interpolation results in a similar study, compared
to deterministic interpolation methods [31]. However, a study by [34] proved that in the case of low
sample data normality and stationarity, deterministic methods like IDW produce more accurate results
than OK. The accuracy assessment in five independent repetitions was proven to be effective, as it
allowed testing of interpolation performances in variable conditions. The interpolation results of IDW
and SI were suitable for maintaining the effects of local soil variabilities, however the same can be
achieved by the modifications of OK parameters if necessary [74].

The fulfilment of the second objective of the study regarding the automation of soil texture
classification enabled the operator to avoid manual reclassification of classes. Automation of the
classification process naturally resulted in shorter processing time than by manual tools execution [75].
Lower human interference in the data processing also provided a uniform classification result
regardless of the input data, as well as its universal applicability. Recent advances in machine learning
algorithms development allowed their implementation and automation in soil texture mapping,
also presenting a new possibility in future research [76]. The current limitation of this study is the
full automation of the interpolation and classification algorithm, which could be performed by R or
Python programming languages.

The applied soil texture classification algorithm allowed the delineation of soil texture
suitability zones, which is often used as a criterion in various GIS-based multicriteria analysis
studies. Soil texture was an impactful criterion in many natural resource management studies:
grassland conservation [77], irrigation management [78], soil salinity analyses [79] and drought risk
assessment [80]. Future directions of suitability analyses using soil texture zones are planned for
vegetable suitability multicriteria analyses, which are highly beneficial in sustainable planning [81].
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5. Conclusions

The automation of soil texture classification enabled time-efficient delineation of suitability zones
for soybean cultivation. Clay, silt and sand soil contents were evaluated using a random split-sample
method in five repetitions, which ensured the objective determination of training data normality and
stationarity. The descriptive statistics of evaluated training data indicated moderate data normality
and stationarity for clay and silt, while sand soil content resulted in highly skewed distribution and
moderate stationarity. The application of logarithmic transformation as a pre-processing to OK reduced
the effect of non-normal distribution, particularly for the sand soil fraction. Tested deterministic
methods, IDW and SI, produced lower interpolation accuracy values than OK, but were considered
as viable methods in the case of low data normality and stationarity. The authors recommend the
evaluation of interpolation methods for suitability calculations, as their performance is variable and
depends on the properties of input samples. It was also observed that these methods were effective in
retaining the local variation data in the interpolation result. Loam and clay loam were determined as
the most suitable soil texture zones for soybean cultivation, covering the northern part of the study
area near the river Drava. Classified soil texture classes with the highest presence in the study area
were moderately suitable silty clay loam (53.26%) and silt loam (34.96%). According to the proposed
methods, the study area is dominantly moderately suitable for soybean cultivation, based on the soil
texture data. The integration of Sentinel-2 multispectral satellite images and GIS-based multicriteria
analysis with current results presents the foundation of future research.
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Appendix A. Automatic Soil Texture Classification Algorithm Scripted in Python

#import of the required libraries
import gdal
import numpy
from osgeo import osr
import os
#import of interpolated clay, silt and sand soil content rasters (marked in italic)
clay_all = gdal.Open(‘clay.tif’)
clay_band = clay_all.GetRasterBand(1)
clay = clay_band.ReadAsArray()
silt_all = gdal.Open(‘silt.tif ’)
silt_band = silt_all.GetRasterBand(1)
silt = silt_band.ReadAsArray()
sand_all = gdal.Open(‘sand.tif ’)
sand_band = sand_all.GetRasterBand(1)
sand = sand_band.ReadAsArray()
#assignment of new soil texture raster
soil_texture = clay
[cols,rows] = soil_texture.shape
#automatic classification function for soil texture
def classification (clay,silt,sand,x,y):
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soil_texture_class = 0
if 55 <= clay[x][y] <= 100 and 0 <= silt[x][y] <= 40 and 20 <= sand[x][y] <= 45:

soil_texture_class = 1 #clay
elif 35 <= clay[x][y] <= 55 and 0 <= silt[x][y] <= 20 and 45 <= sand[x][y] <= 65:

soil_texture_class = 2 #sandy clay
elif 40 <= clay[x][y] <= 60 and 40 <= silt[x][y] <= 60 and 0 <= sand[x][y] <= 20:

soil_texture_class = 3 #silty clay
elif 20 <= clay[x][y] <= 35 and 0 <= silt[x][y] <= 28 and 45 <= sand[x][y] <= 80:

soil_texture_class = 4 #sandy clay loam
elif 28 <= clay[x][y] <= 40 and 40 <= silt[x][y] <= 70 and 0 <= sand[x][y] <= 20:

soil_texture_class = 5 #silty clay loam
elif 28 <= clay[x][y] <= 40 and 15 <= silt[x][y] <= 52 and 20 <= sand[x][y] <= 45:

soil_texture_class = 6 #clay loam
elif 8 <= clay[x][y] <= 28 and 28 <= silt[x][y] <= 50 and 22 <= sand[x][y] <= 52:

soil_texture_class = 7 #loam
elif 15 <= clay[x][y] <= 20 and 0 <= silt[x][y] <= 50 and 45 <= sand[x][y] <= 85:

soil_texture_class = 8 #sandy loam
elif 0 <= clay[x][y] <= 28 and 50 <= silt[x][y] <= 100 and 0 <= sand[x][y] <= 50:

soil_texture_class = 9 #silt loam
elif 10 <= clay[x][y] <= 15 and 0 <= silt[x][y] <= 30 and 70 <= sand[x][y] <= 85:

soil_texture_class = 10 #loamy sand
elif 0 <= clay[x][y] <= 10 and 0 <= silt[x][y] <= 15 and 85 <= sand[x][y] <= 100:

soil_texture_class = 11 #sand
elif 0 <= clay[x][y] <= 15 and 80 <= silt[x][y] <= 100 and 0 <= sand[x][y] <= 20:

soil_texture_class = 12 #silt
return soil_texture_class

#automatic classification of each pixel in new soil texture raster
for x in range(len(soil_texture)):

for y in range(len(soil_texture[x])):
soil_texture[x][y] = classification(clay,silt,sand,x,y)

#export of classified soil texture raster (marked in italic)
driver = gdal.GetDriverByName(“GTiff”)
outdata = driver.Create(‘soil_texture.tif ’, rows, cols, 1, gdal.GDT_UInt16)
outdata.SetGeoTransform(clay_all.GetGeoTransform())
outdata.SetProjection(clay_all.GetProjection())
outdata.GetRasterBand(1).WriteArray(soil_texture)
outdata.GetRasterBand(1).SetNoDataValue(-99999)
outdata.FlushCache()
outdata = None
band = None
soil_texture = None
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Appendix B. Interpolation Parameters of Training Sample Sets
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Abstract: The determination of cropland suitability is a major step for adapting to the increased
food demands caused by population growth, climate change and environmental contamination.
This study presents a novel cropland suitability assessment approach based on machine learning,
which overcomes the limitations of the conventional GIS-based multicriteria analysis by increasing
computational efficiency, accuracy and objectivity of the prediction. The suitability assessment
method was developed and evaluated for soybean cultivation within two 50 × 50 km subsets located
in the continental biogeoregion of Croatia, in the four-year period during 2017–2020. Two biophysical
vegetation properties, leaf area index (LAI) and a fraction of absorbed photosynthetically active
radiation (FAPAR), were utilized to train and test machine learning models. The data derived from a
medium-resolution satellite mission PROBA-V were prime indicators of cropland suitability, having
a high correlation to crop health, yield and biomass in previous studies. A variety of climate, soil,
topography and vegetation covariates were used to establish a relationship with the training samples,
with a total of 119 covariates being utilized per yearly suitability assessment. Random forest (RF)
produced a superior prediction accuracy compared to support vector machine (SVM), having the
mean overall accuracy of 76.6% to 68.1% for Subset A and 80.6% to 79.5% for Subset B. The 6.1%
of the highly suitable FAO suitability class for soybean cultivation was determined on the sparsely
utilized Subset A, while the intensively cultivated agricultural land produced only 1.5% of the same
suitability class in Subset B. The applicability of the proposed method for other crop types adjusted
by their respective vegetation periods, as well as the upgrade to high-resolution Sentinel-2 images,
will be a subject of future research.

Keywords: leaf area index (LAI); fraction of absorbed photosynthetically active radiation (FAPAR);
random forest (RF); support vector machine (SVM); soybean; GIS-based multicriteria analysis; covariates

1. Introduction

The sustainability of present agricultural production faces severe global challenges in
the form of rapid population growth [1], climate change [2] and increasing environmental
contamination [3]. These factors are projected to cause serious global food nutrient de-
ficiency by 2050 [4], thus urging for more efficient utilization of the current agricultural
land. Current agricultural land management plans are frequently based on obsolete envi-
ronmental conditions and monetary priorities [5], so their upgrade should be a first step
in improving agricultural production systems. With the selection of suboptimal locations
to cultivate crops, farmers often turn to using excessive mineral fertilizers and pesticides
to achieve desired yields, damaging the ecosystem in the process [6]. Determining the
cropland suitability for major crop types is the mandatory process for efficient agricultural
land management planning [7]. This procedure is a key basis of globally sustainable agri-
culture and food security, meeting the Sustainability Development Goals of the United
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Nations [8]. Soybean has a particularly increasing importance within crop rotation systems
on a global scale, with a constant increase of yield and harvested land in all world regions
from 1979 to projections in 2030 [9]. According to the most recent World Agricultural
Supply and Demand Estimates report, its use for food, oil and biofuel production is high
and is further expected to grow in the forthcoming years [10]. This indicates a high priority
for solving the problematics of cropland suitability determination limitations and more
efficient soybean cultivation systems globally.

Present state-of-the-art methods of cropland suitability determination are most com-
monly based on the geographic information system (GIS)-based multicriteria analysis,
combined with the advanced criteria weighing procedures, like the Analytic Hierarchy
Process (AHP). Numerous cropland suitability determination studies based on the GIS-
based multicriteria analysis of both various major [11,12] and obscure crop types [13] were
successfully performed. Remote sensing data from global open data satellite missions
were among the fundamental data sources in these analyses [14,15]. A high degree of
flexibility in the suitability determination process is one of the main advantages of GIS-
based multicriteria analysis being widely applied globally [16]. However, this method
has some distinctive disadvantages, which were only partially solved so far. The most
obvious one is the overreliance on the user’s subjective assessment of criteria selection and
importance, especially within the AHP process. AHP is limited to five to nine criteria or
criteria groups as per the recommendations of Saaty and Ozdemir [17], so the inclusion of
additional important covariates results in more complex processing. The entire method is
consequentially more susceptible to human-made blunders in pairwise comparison and
criteria weight determination [18]. At the same time, the inclusion of a limited number
of environmental factors results in the incomplete representation of cropland suitability.
The accuracy assessment of the conventional GIS-based multicriteria analysis results is
often non-existent, with some successfully performed approaches using ground truth yield
data [12] or satellite-derived vegetation indices [11], which include only a segment of
cropland suitability in the validation process. The possibility of an objective and easily
accessible validation procedure for cropland suitability results would ensure a straightfor-
ward comparison between the prediction models and suitability results of multiple crop
types [11]. This would also ensure the integration of various cropland suitability results
into a unique agricultural land management foundation.

Machine learning algorithms present a possible solution to the abovementioned lim-
itations of the GIS-based multicriteria analysis in cropland suitability assessment. They
provided more efficient modelling of non-linear relationships of various environmental
features and covariate data, compared to the parametric methods in recent studies [19].
Its efficiency is primarily caused due to the ability to integrate complex climate, soil and
topography factors into a prediction model, unlike conventional statistical methods [20].
At the same time, the user is not expected to establish the relationships between these data.
The user’s main task in the machine learning prediction is the determination of covariates
that are relevant to the study aim to avoid redundancy and possible bias due to the inac-
curate or irrelevant covariate selection. So far, machine learning has been widely utilized
with satellite-derived vegetation indices for the detection of crop rotation systems [21],
crop health status [22], crop type distribution [23] and yield prediction [24]. Over the past
few years, some initiatives of the machine learning application for cropland suitability
assessment have achieved promising but limited results. Taghizadeh-Mehrjardi et al. [25]
proved the superiority of machine learning methods compared to traditional cropland
suitability determination procedures. They determined cropland suitability using empiri-
cally calculated potential yield for wheat and barley, following the Food and Agriculture
Organization of the United Nations (FAO) specifications. The application of FAO stan-
dardized suitability classes is widely recognized as a stable procedure of the cropland
suitability assessment, regardless of the crop type and geographical location [26]. The
implementation of standardized cropland suitability classes enables effective integration
with existing agricultural land management plans [11]. It also has the advantage of the
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suitability comparison with other crop types to determine the best possible alternatives
for the optimal agricultural subsiding and adjustment of crop rotations. Akpoti et al. [27]
successfully determined cropland suitability for rice cultivation using niche ground truth
data, which required a considerable time for the preparation of the machine learning
prediction. However, the potential of machine learning predictions in cropland suitability
determination is still largely unutilized. With the existence of reliable and globally avail-
able training data, machine learning could represent a novel and superior approach to
conventional cropland suitability determination using GIS-based multicriteria analysis.

While machine learning allows higher computational efficiency and accuracy compared
to the conventional methods, there is a challenge to provide indicators that reliably specify
cropland suitability levels. Many researchers related the cropland suitability with the in-
creased crop yield and biomass [28–30]. The majority of these studies also indicated the large
potential of biophysical vegetation properties in cropland suitability assessment. Leaf area
index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) are re-
garded as complementary biophysical properties for crop yield estimations, frequently used
as the essential variables in crop productivity assessment [31–33]. Recent studies successfully
integrated LAI and FAPAR with a conventional GIS-based multicriteria analysis, producing
superior suitability and yield prediction accuracy of various crop types [28,34]. These bio-
physical vegetation properties also showed considerable potential when used individually
in crop suitability studies. LAI derived from remote sensing products was highly correlated
with the crop biomass, yield and overall crop status, especially in early growth stages [35].
FAPAR showed a strong correlation with the total crop biomass production [28], its predictive
modelling [36], as well as with its temporal variation during the crop vegetative period [37].
Biophysical properties derived from satellite observations produced a very high correlation
with the in-situ measurements, resulting in a coefficient of determination up to 0.96 for LAI
and up to 0.98 for FAPAR [31]. These biophysical vegetation properties have a long-term
availability at 300 m spatial resolution from the PROBA-V mission, seamlessly upgraded
to the Sentinel-3 products for global and stable use in the future [38]. By implementing a
cropland suitability indicator based on multitemporal LAI and FAPAR data in the machine
learning algorithms, there is considerable potential in forming a computationally efficient
and globally available cropland suitability assessment method.

The aim of this study was to propose a novel cropland suitability assessment and
accuracy assessment approach based on machine learning. This approach is designed
to simplify the calculation of cropland suitability on a global scale and to increase the
objectivity of prediction compared to the conventional GIS-based multicriteria analysis
approach. The method was evaluated for the soybean cropland suitability determination,
with the potentially universal applicability for other crop types.

2. Materials and Methods

The generalized major components of the proposed approach of cropland suitability
assessment are presented in Figure 1. The cropland suitability assessment was performed
using solely open-source GIS software. SAGA-GIS v7.9.0 (Hamburg, Germany) was used
for input data preprocessing, machine learning prediction and accuracy assessment, while
QGIS v3.14 (Grüt, Switzerland) was used for map creation. All input spatial data and
suitability assessments were georeferenced to the Croatian Terrestrial Reference System
(HTRS96/TM). The complete computational process of the study was performed using a
desktop personal computer, which is standard equipment for agricultural land manage-
ment users in the majority of the world.

The workflow of the proposed cropland suitability assessment method contains two
primary steps (Figure 2): (1) spatial data acquisition and preprocessing; and (2) machine
learning prediction of cropland suitability. The cropland suitability classes were determined
for soybean cultivation, while potentially supporting its universal applicability with the
adjustments related to the vegetation period of the selected crop type.
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2.1. Study Area

The study area covered two 50 × 50 km subsets located in the continental biogeore-
gion of Croatia (Figure 3). Agriculture is one of the major activities in Continental Croatia,
with agricultural areas covering 52.9% of its total area per CORINE 2018 Land Cover data.
Multiple recent studies noted the considerable variability of soybean cropland suitability in
the study area, urging for more efficient agricultural land management planning [11,39–41].
Subset A is characterized by hilly terrain and sparsely located agricultural parcels, often
in the proximity of forests. Subset B is situated in the lowland area in eastern Croatia,
being traditionally used for intensive agricultural production. Soybean is cultivated con-
servatively by specific land owners in both subsets, with the union of soybean parcels
during 2017–2020 covering only 11.9% and 19.0% of agricultural area in Subset A and B,
respectively. The general properties of these subsets are presented in Table 1. The major
deviation from mean climate data occurred in 2018, which was extremely hot and dry in the
soybean vegetation period. The other notable deviation was a relatively high precipitation
in 2019 for both study subsets. All yearly air temperature and precipitation data in study
period during 2017–2020, between April and October, are shown in Appendix A, Table A1.
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Table 1. General properties of subset areas.

Properties
Subset

Data Source
A B

Longitude/Latitude 16◦45′ E, 45◦41′ N 18◦38′ E, 45◦20′ N /

Major land cover classes Agricultural areas (55.5%), Forests
(39.9%), Urban areas (2.9%)

Agricultural areas (75.7%), Forests
(17.8%), Urban areas (5.7%) CORINE 2018

Total country soybean area in 2020 10.1% 22.8% APPRRR
Mean annual air temperature 11.0 ◦C ± 0.2 ◦C 11.1 ◦C ± 0.1 ◦C CHELSA

Mean air temperature
(April–October) 17.5 ◦C ± 0.3 ◦C 17.9 ◦C ± 0.1 ◦C CHELSA

Total annual precipitation 859.1 mm ± 34.7 mm 685.9 mm ± 24.9 mm CHELSA
Total precipitation

(April–October) 547.6 mm ± 28.3 mm 449.2 mm ± 14.2 mm CHELSA

Mean elevation 134.8 m ± 41.0 m 91.1 m ± 9.7 m EU-DEM
Mean slope 1.5◦ 0.4◦ EU-DEM

Major soil types per FAO85
classification

Dystric Gleysol (Gd),
Stagno-Gleyic Luvisol (Lgs)

Eutric Gleysol (Ge), Mollic
Gleysol (Gm), Orthic Luvisol (Lo) ESDC

APPRRR: Paying Agency for Agriculture, Fisheries and Rural Development of Croatia, ESDC: European Soil Data Centre.
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Soybean production has increasing importance in Croatia, ranking second in a cul-
tivated agricultural area with 83 thousand ha, behind maize, with the average yield of
3.2 t ha−1 [42]. According to the same source, the overall production of soybean in Croatia
increased by 14.0% in 2020 compared to the year prior, with the prospect of further growth.
The most common soybean variety in the study area is the mid-early maturity group 0, with
an average vegetative period of 115–125 days [43]. The early maturity group 00 in subset A
and mid-late maturity group I in subset B are periodically cultivated. The usual vegetative
period of these soybean maturity groups ranges from late April to mid-September, covering
days of the year (DOY) from 120 to 245. The duration of vegetative growth stages is in the
range of 35 to 45 days after sowing. Full bloom (R2), beginning seed (R5) and full seed
(R6) are regarded as the most important soybean growth stages for stable yield [44]. These
stages commonly cover DOY ranges of 170–180, 190–200 and 200–220 in the study area,
respectively. According to the common annual anomalies of soybean growth, the study
period was determined from 1 April to 31 October. This approach included vegetation
periods of all soybean parcels in the study area, regardless of their maturity group and
agrotechnical operations performed by farmers.

2.2. Spatial Data Acquisition and Preprocessing

The machine learning prediction and accuracy assessment of cropland suitability
for soybean cultivation were performed using open remote sensing and GIS data. LAI
and FAPAR biophysical properties were used for the training of supervised classification
machine learning models, as complementary and reliable indicators of crop yield [31]. The
10-day LAI and FAPAR products from a PROBA-V satellite with 300 m spatial resolution
were downloaded from the Copernicus Global Land Service website for the period be-
tween April and October in 2017–2020. PROBA-V enables highly accurate and consistent
determination of biophysical vegetation properties, on par with similar missions and ob-
servations from the ground [38]. Training and test data for suitability assessment were
created according to the 300 m× 300 m regular grid, which corresponds to LAI and FAPAR
raster grids derived from PROBA-V. The spatial resolution of 300 m was determined as
suitable for various monitoring, and land management uses in agriculture at the macro
level, representing medium-sized and larger agricultural parcels [45]. The pixels from this
grid were filtered based on the coverage of ground truth soybean parcels within the pixels,
designated separately for each year during the 2017–2020 period.

Reference soybean parcels were obtained from the official Paying Agency for Agricul-
ture, Fisheries and Rural Development (APPRRR) of Croatia, being applied and controlled
for agricultural incentive distribution. These data were additionally visually inspected
and verified using the 0.5 m spatial resolution digital orthophoto provided by the State
Geodetic Administration of Croatia. At least 75% soybean parcel coverage was determined
as a filtering threshold to reduce the spectral mixing near the boundary of neighboring
land cover classes [46]. Training and test data were created separately for each individual
year in the 2017–2020 period, using data sensed during a soybean vegetative period of
major soybean varieties in the study area. This approach ensures the robustness of the
prediction by considering the entire vegetation period of all soybean varieties present in
the study area. This is reflected in the resistance in temporal variabilities of sowing periods
and particular soybean growth stage duration. These components are commonly affected
by the numerous abiotic factors and farmer decision making, including annual weather
trends, land cultivation systems, fertilization and irrigation systems.

Various complementary covariates were used for the establishment of the relation-
ship between the soybean cropland suitability represented by LAI and FAPAR with the
environmental conditions in the study area. The three primary environmental factors that
condition the cropland suitability are climate, soil and topography [20]. Raster covariates
representing these environmental requirements of soybean cultivation and the auxiliary
vegetation covariates are presented in Table 2. The selection of particular covariates was
performed based on the various environmental effects on the quality and quantity of
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soybean production from previous studies [11,37,43,44,47,48]. A total of 119 covariates
were used per the individual prediction of yearly cropland suitability classes for soybean
cultivation, consisting of 47 climate, 24 soil, 6 topographic and 42 vegetation covariates.

Table 2. A generalized description of covariates used in the study.

Covariate Group Covariate Measurement Unit Native Spatial
Resolution (m) Data Source

Climate

Mean monthly air temperature ◦C

1000 CHELSA [49]
Minimum monthly air temperature ◦C
Maximum monthly air temperature ◦C

Total monthly precipitation mm
Bioclimatic variables varying

Soil

Nitrogen cg kg−1

250 SoilGrids [50]

Soil organic carbon dg kg−1

pH /
Cation exchange capacity mmol(c) kg−1

Clay content g kg−1

Silt content g kg−1

Sand content g kg−1

Bulk density cg cm−3

Topographic

Digital elevation model m

25

EU-DEM [51]
Slope ◦

derived from EU-DEM
Aspect ◦

Total potential solar radiation kWh m−2

Topographic wetness index /
Wind exposition index /

Vegetation Dry matter productivity kg ha−1 day−1
300 PROBA-V [52]Fraction of vegetation cover /

Climate has the dominant effect on the duration of soybean vegetative and repro-
ductive growth stages, emerging efficiency after sowing and its overall requirements of
sunshine and water [53]. Climate data was represented using the CHELSA dataset [49], con-
taining the most recent global climate data at the 1 km spatial resolution during 1979–2013.
Air temperature and precipitation covariates were filtered from April to October. The 19
bioclimatic variables were derived from CHELSA historical monthly data, representing
air temperature and precipitation quarterly extremes and their value ranges for ecological
modelling [49]. Soil chemical and physical properties have a major impact on soybean
protein and oil quantity, while their variability is associated with the anomalies in soybean
yield [47]. Per European Soil Data Centre, Gleysol and Luvisol soils are dominant in
both subset areas, with moderate variability of their subtypes. These soil properties were
represented by SoilGrids data at 0–5 cm, 5–15 cm and 15–30 cm soil depths [50], which
dominantly affect soybean growth and produced yield [48]. Topography has an important
role in representing the interaction of the elevation and terrain configuration with climate
and soil effects on soybean cultivation [54]. Various theoretical topography indicators were
used to model the micro variations of climate and soil conditions, especially regarding
solar, wind and water drainage effects. The topographic wetness index was determined
using the Multiple Flow Direction procedure. Total potential solar radiation and the wind
exposition index were calculated according to the topo-climatology models by Böhner
and Antonić [55]. Vegetation covariates derived from PROBA-V products, which are not
directly related to crop yield, were added as supplementary biophysical properties to
LAI and FAPAR. Dry matter productivity (DMP) indirectly represented the efficiency of
solar radiation and air temperature on the dry biomass increase, while the fraction of
vegetation cover (FCOVER) assessed the percentage of ground coverage by vegetation,
without dependency on the crop optical properties [33]. These data produced a low to
moderate correlation with LAI and FAPAR, preventing the suitability assessment bias.

Resampling of covariate rasters was performed to match the spatial resolution of
LAI and FAPAR rasters of 300 m. The upscaling allows a straightforward and accurate
creation of lower spatial resolution data, while the downscaling represents a more limited
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and generally less accurate process [56]. Soil and topography covariates were upscaled
to 300 m spatial resolution using a bilinear interpolation method, which achieved higher
accuracy compared to similar resampling methods in a recent study by Liu and Weng [57].
Various downscaling methods of the CHELSA climate data with the 1 km native spatial
resolution were evaluated to ensure optimal downscaling accuracy. Nearest neighbour
(NN), bilinear interpolation (BI) and B-spline interpolation (BSI) were included in the
process, producing high accuracy for the downscaling of similar spatial data [58]. Accuracy
assessment of the downscaled rasters was performed according to the ground truth climate
data from 34 stations in the spatial coverage of study area subsets or their close proximity.
Mean air temperature and total monthly precipitation were obtained from the Croatian
Meteorological and Hydrological Service (DHMZ), representing the most recent official
climate data (1971–2000) in Croatia. The individual monthly data between April and
October was used for the accuracy assessment for air temperature, while the sum of
precipitation in the same period was used to reduce bias caused by its high inter-annual
variability. The coefficient of determination (R2) and root mean square error (RMSE) were
used for the downscaling accuracy assessment, which increased with higher R2 and lower
RMSE.

2.3. Machine Learning Prediction of Cropland Suitability

The cropland suitability for soybean cultivation was assessed following a two-step
classification principle: (1) determination of suitability levels in reference soybean parcels
based on K-means classification of multitemporal LAI and FAPAR; and (2) machine learning
prediction of cropland suitability for soybean cultivation in the entire agricultural land in
the study area, using covariates to establish a relationship between the suitability levels and
environmental conditions (Figure 4). The cropland suitability prediction was performed
individually for each year within the 2017–2020 period. The primary reason for that
procedure was the presence of crop rotation systems, as soybean should not be cultivated
in the same location in the two- or three-year consecutive span. This approach prevented
interference with the spectral information of other crop types. Additionally, inter-annual
weather conditions and diseases are highly variable, which significantly affect soybean
biomass and yield [54]. The proposed method avoids the bias caused by integrating these
conditions over multiple years by assessing cropland suitability individually for each year,
preventing the impact of extremely beneficial or non-beneficial events for a particular
year. The proposed method instead considers the relative suitability values in subset areas,
which are almost equally affected by the weather events or diseases in the 50× 50 km areas.
Therefore, K-means classification evaluated the relative soybean cropland suitability levels
per year, while machine learning models were used for the absolute cropland suitability
assessment, expanding the evaluation on the entire agricultural area in subset areas besides
reference soybean parcels. This approach ensured objective assessment of soybean cropland
suitability in the 88.1% and 81.0% of the agricultural area which was not utilized for the
soybean cultivation in the 2017–2020 period for Subset A and B, respectively. The suitability
assessment over the entire available area enables expansion and regionalization of soybean
cultivation in new locations, supporting the increasing need for high quality and quantity
of produced soybean.

LAI and FAPAR annual biophysical properties in the 300 × 300 m grid were classified
into five suitability values using the K-means unsupervised classification method for
their determination prior to machine learning model training. The suitability values in
the 1–5 range were ranked according to mean LAI and FAPAR, where higher LAI and
FAPAR values indicate higher cropland suitability for soybean cultivation. A relative
approach of training and test data creation using LAI and FAPAR using an unsupervised
classification ensured the possibility of multi-year suitability comparison, despite annual
weather variability and extremes.
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Training and test data were separated from the unique classified dataset using the
stratified random splitting in the 50:50 ratio. The same procedure was successfully applied
with the machine learning supervised classification methods in a recent study [59]. This
approach met the recommendations of Hengl et al. [50] and Colditz [60], who noted
the importance of a sufficient amount of training data for machine learning prediction.
Random forest (RF) and support vector machine (SVM) were applied for soybean cropland
suitability assessment, being the most often applied machine learning methods due to
their computational efficiency and straightforwardness [25]. They also achieved superior
accuracy compared to other machine learning and conventional supervised classification
algorithms in previous environmental studies [59,61]. Determining the parameters for
RF and SVM prediction was based on the iterative procedure, using the parameters that
ensured the highest prediction accuracy. Soybean cropland suitability assessment was
performed individually for each year in the 2017–2020 period. Yearly suitability classes were
assessed separately to reduce prediction bias caused by annual weather extreme events,
which represent rare occurrences in the perspective of agricultural land management. These
rasters were clipped to the agricultural areas land cover class from CORINE 2018, extracting
the possible area for soybean cultivation. The relative importance of input covariates on the
predicted soybean cropland suitability results using RF was performed by the Gini decrease
measure, being a frequently used and stable measure of importance [61]. It proportionally
quantifies the purity of model performance during node splits for a particular covariate,
meaning that the higher Gini decrease indicates higher importance of a covariate in the
prediction model.

Machine learning prediction accuracy was assessed using the figure of merit (F), which
was developed by Pontius and Millones [62] as an upgrade to kappa coefficients in remote
sensing studies. It is expressed per suitability value according to the formula:

F =
a

o + a + c
· 100%, (1)

where a (agreement) represents correctly predicted suitability values, o (omission) repre-
sents falsely predicted suitability values in other suitability classes and c (commission)
represents falsely predicted suitability values of the particular suitability class. The overall
performance of soybean cropland suitability assessment was determined using an overall
agreement (OA) value, calculated as the ratio of total agreements and total classified values.
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Four yearly suitability rasters were averaged and aggregated based on the FAO
methodology for land suitability assessment in five classes [63]. The ranking of soybean
cropland suitability values was performed according to the FAO suitability classes, includ-
ing highly suitable (S1), moderately suitable (S2), marginally suitable (S3), currently not
suitable (N1) and permanently not suitable (N2) classes [26]. These classes were associ-
ated with the suitability values according to the percentage of maximum suitability, per
previously referenced FAO specifications (Table 3). Permanently non suitable areas in the
N2 class contained all non-agricultural areas from CORINE 2018 which did not support
soybean cultivation without major ecosystem disturbance.

Table 3. Designation of FAO suitability classes according to suitability values obtained after machine
learning classification.

FAO Suitability Class
Percentage of Maximum

Suitability per FAO
Specifications [63]

Range of Suitability Values

S1 80–100% 4–5
S2 60–80% 3–4
S3 40–60% 2–3
N1 20–40% 1–2
N2 0–20% non-agricultural

3. Results

Mean air temperature and precipitation original CHELSA 1000 m data showed a
high correlation with the ground truth climate data from DHMZ stations (Appendix A,
Table A2). All three evaluated downscaling interpolation methods produced high accuracy
values, preserving climate values from the original data at a high degree. The B-spline
interpolation method produced the highest downscaling accuracy, achieving a higher cor-
relation with the ground truth data for precipitation compared with the original CHELSEA
climate data. Figure 5 displays the correlation between these datasets with the ground
truth DHMZ climate data. A slightly higher correlation was observed for April and May
air temperatures compared to summertime values for both subsets. Lower precipitation
values in Subset B were also more accurately represented by CHELSA data compared to
the higher precipitation in Subset A.

Seasonal trends of mean LAI and FAPAR values in soybean parcels during its veg-
etative period between April and October from 2017 to 2020 are represented in Figure 6.
Both LAI and FAPAR generally reached their peak in late July or early August, which cor-
responds to the usual periods of soybean varieties in the study area entering the R6 growth
stage. These values reached higher peaks in Subset A than in Subset B in all observed
years. A slightly later vegetative period of soybean in Subset A compared to Subset B is
also noted, which is characteristic for the early soybean maturity groups commonly present
in this area. Meanwhile, the soybean vegetative period in Subset B matched the duration
of mid-early and mid-late maturity groups, which confirms their presence in the study
area from previous studies. Minor sudden changes in LAI and FAPAR trends for the year
2017 in Subset A and year 2020 in Subset B implied the susceptibility of LAI and FAPAR to
annual extreme weather conditions during the early reproductive soybean growth stages.
These anomalies are a common occurrence caused by drought in the study area, and were
almost fully equalized in the latter soybean growth stages.
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The total count and coverage of the soybean samples used for the determination of
training and test data for soybean cropland suitability assessment are displayed in Table 4.
Both subsets produced a relatively stable sample count for each year within the 2017–2020
period. Subset B produced a higher sample count and relative coverage in the subset area
due to the significantly higher amount of enlarged soybean parcels in lowland areas than
Subset A. A relative percentage of sample coverage within the subset agricultural areas is
in accordance with the specifications by Colditz [60], who proposed at least 0.25% from the
classified area being designated as training data.

Table 4. Training and test sample count and area covered per subset agricultural land.

Subset/Year Total Sample Count Area (ha) Percentage of Subset
Agricultural Land (%)

A/2020 236 2124 1.53
A/2019 206 1854 1.34
A/2018 304 2736 1.97
A/2017 299 2691 1.94

B/2020 560 5040 2.67
B/2019 618 5562 2.94
B/2018 667 6003 3.18
B/2017 668 6012 3.18

The mean LAI and FAPAR values after suitability classification using K-means as
the preprocessing to training data creation are displayed in Appendix A, Table A3. RF
produced a superior classification accuracy for soybean cropland suitability in seven of
eight yearly suitability values compared to SVM (Table 5). It produced higher mean OA
values than SVM in both subsets, resulting in 76.6% to 68.1% for Subset A and 80.6% to
79.5% for Subset B. Cropland suitability assessment accuracy was slightly lower in Subset
A, with RF producing significantly higher accuracy in conditions of more limited training
data. Both machine learning methods produced a high prediction accuracy in Subset B.
The correlation of the higher soybean samples with higher prediction accuracy is also
observed for yearly predictions within the subsets. RF and SVM predictions for 2017 and
2018 produced a higher mean OA of 6.5% for Subset A and 5.2% for Subset B, compared to
the 2019 and 2020 predictions. A general trend of higher prediction accuracy represented
by the figure of merit was observed for three more suitable values for soybean cultivation
(5, 4, 3) in relation to the less suitable values.

The relative importance of individual covariates divided into the abiotic (climate, soil
and topography) and vegetation covariates are presented in Figure 7. Vegetation covariates
produced higher individual Gini decrease values compared to abiotic covariates from
the same prediction period. However, their total count of 42 compared to the 77 abiotic
covariates per prediction indicated similar overall importance of these covariate groups.
FCOVER and DMP sensed during June and July had the dominant importance out of the
top-five importance vegetation covariates per prediction. These covariates contained 77.5%
of the most impactful vegetation covariates considering both subsets. The importance
of abiotic covariates varied between the subsets. SoilGrids covariates were the most
represented in the top-five most impactful abiotic covariates in Subset A, covering one half
of the group. It is closely followed by CHELSA climate data, with 45.0% of the top-five
most important abiotic covariates. Precipitation values over the entire soybean vegetative
period were the most represented climate data. SoilGrids data were dominantly included
within the most impactful covariates in Subset B, representing a 75.0% share. Soil nitrogen
was the most frequent soil covariate, especially at the 5–15 cm soil depth. Topographic
covariates derived from EU-DEM produced 20.0% of the most impactful abiotic covariates
in Subset B.
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Yearly and aggregated cropland suitability classes for soybean cultivation per subset
are displayed in Figure 8. The average aggregated suitability values were 2.376 and 2.406
for Subsets A and B, respectively. Yearly suitability values in 2018 and 2020 produced
up to 24.4% lower values compared to the mean yearly suitability in Subset A (Table 6).
Traditionally intensively utilized agricultural areas in subset B produced a slightly higher
percentage of suitable classes for soybean cultivation (S1–S3) with 49.5% of the subset area,
compared to the 49.3% in Subset A. However, multiple locations in Subset A reached a
higher suitability peak, especially regarding the most suitable S1 class. The most suitable
aggregated suitability classes in Subset A were observed in the central part of the subset,
containing soybean parcels dominantly surrounded by forests. The most suitable areas for
soybean cultivation in Subset B were largely dispersed over the subset, while the currently
non-suitable land was dominantly concentrated by the larger settlements.
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Table 5. Accuracy assessment of cropland suitability values prediction using machine learning methods.

Subset/
Year Method

Suitability Values

OA5 (Very High) 4 (High) 3 (Moderate) 2 (Low) 1 (Very Low)

F o c F o c F o c F o c F o c

A/2020 RF 46.2 5.0 0.8 38.7 7.6 8.4 62.5 5.0 5.0 57.6 8.4 3.4 71.4 0.8 9.2 73.1
SVM 43.8 4.2 3.4 40.6 6.7 9.2 51.7 9.2 2.5 36.2 10.1 15.1 59.0 6.7 6.7 63.0

A/2019 RF 66.7 3.8 1.9 77.8 2.9 2.9 65.7 3.8 7.7 46.2 7.7 5.8 41.7 6.7 6.7 75.0
SVM 64.7 4.8 1.0 38.5 13.5 1.9 53.2 1.9 19.2 42.9 7.7 7.7 45.5 6.7 4.8 65.4

A/2018 RF 73.2 4.6 2.6 60.0 4.6 0.7 69.4 5.2 2.0 54.5 5.2 7.8 64.4 2.0 8.5 78.4
SVM 51.0 7.8 7.8 52.4 5.2 1.3 55.9 9.2 0.7 44.7 7.2 9.8 58.0 2.0 11.8 68.6

A/2017 RF 76.9 1.3 0.7 50.0 6.0 3.3 69.0 6.0 0.0 66.1 3.3 9.3 72.2 3.3 6.7 80.0
SVM 69.2 2.0 0.7 48.3 6.0 4.0 57.6 6.7 2.7 66.7 5.3 6.0 60.7 4.7 11.3 75.3

B/2020 RF 60.7 2.9 1.1 64.8 5.4 6.1 62.8 3.2 2.5 61.5 6.1 9.0 56.9 6.1 5.1 76.2
SVM 44.0 5.1 0.0 55.8 7.6 7.6 60.0 4.3 1.4 62.2 3.6 12.6 59.2 5.8 4.7 73.6

B/2019 RF 67.9 1.6 1.3 73.2 1.6 1.9 69.2 5.2 3.9 62.7 7.5 5.8 65.0 4.2 7.1 79.9
SVM 70.8 2.3 0.0 83.8 1.3 0.6 67.7 5.2 4.5 60.0 6.5 9.1 67.4 4.5 5.5 80.2

B/2018 RF 82.1 1.8 0.3 62.5 5.7 4.2 65.9 5.4 7.2 74.5 3.3 4.5 78.9 1.2 1.2 82.5
SVM 99.9 0.0 0.0 66.3 6.3 1.8 61.5 4.8 10.8 64.8 5.7 5.4 77.8 1.8 0.6 81.3

B/2017 RF 73.0 2.7 3.3 65.1 3.0 1.5 69.2 6.4 4.5 76.2 1.8 1.2 76.6 2.1 5.5 83.9
SVM 78.3 2.7 1.8 52.3 4.5 1.8 72.4 3.9 6.4 80.0 1.8 0.6 69.1 3.9 6.4 83.0

F: figure of merit (%); o: omission (%), c: commission (%); OA: overall agreement (%); highest OA values per subset/year were bolded.

Table 6. Class coverage area per aggregated soybean suitability class.

Subset
Class Coverage per Aggregated Suitability Class (%)

S1 S2 S3 N1 N2

A 6.1 21.0 22.2 5.7 45.0
B 1.5 13.4 34.6 25.1 25.3

4. Discussion

The advantages of the proposed novel cropland suitability assessment method consist
of a straightforward and computationally efficient machine learning application and the
global availability of open climate, soil, topographic and vegetation data. These are some
of the main factors which could ensure its extensive application in the future [64]. The
proposed approach provides a stable basis for cropland suitability determination as a po-
tentially superior long-term alternative to GIS-based multicriteria analysis. This approach
allows the user to overcome the two most impactful disadvantages of the conventional
GIS-based multicriteria approach, allowing the inclusion of complex input data [50] and
avoiding subjectivity in suitability assessment [18]. The additional advantage to the con-
ventional approach is the accuracy assessment of the easily accessible LAI and FAPAR
data [38]. This process provides a step forward in the objective assessment of model per-
formance and the comparison of FAO suitability classes between two individual datasets.
The proposed method was successfully performed using a commonly available desktop
personal computer, which cuts down the need for expensive hardware. However, there
are still several limitations yet to be resolved. Based on the results obtained in this study
and the extensive review of the literature, the improvements of the proposed cropland
suitability assessment approach can be performed in four general directions, namely by:

• adopting performance evaluation for multiple crop types with the aim of determin-
ing the multidimensional cropland suitability dataset for a particular study area,
presenting a complete solution for the agricultural land management;

• modification of the suitability assessment approach using high-resolution Sentinel-2
satellite images for the cropland suitability assessment at micro-locations;

• improvement of the present suitability assessment method considering the optimiza-
tion of training samples and input covariates;

• implementation of the predicted soybean cropland suitability in practice considering
present agricultural practices in the study area.

Cropland suitability classes predicted using the proposed method primarily reflect
suitability consistency throughout multiple years. While the advantage of the relative
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unsupervised classification of LAI and FAPAR values for the creation of training samples
makes it resistant to the annual extremes caused by weather events, at the same time there
is some ambiguity in the absolute suitability levels of these values. This could be addressed
with the integration of yield data as the measure of absolute suitability levels with the
proposed approach based on satellite-derived biophysical crop properties. LAI and FAPAR
showed the sensitivity to vegetation properties of various crop types in previous studies,
possibly presenting universal crop suitability indicators [65]. Gitelson [37] noted the FA-
PAR sensitivity to canopy structures and photosynthetic specificities of various crop types,
including soybean and maize. The accurate determination of biophysical crop properties
was maintained using the high spatial resolution Sentinel-2 and moderate spatial resolu-
tion Sentinel-3 products. This strongly indicates the applicability of the proposed method
through multiple scales of interest for agricultural land management for major crop types.
Moreover, the global coverage and open data availability of both Sentinel-2 and Sentinel-3
ensure widespread applicability of this method in the future [15]. Present methodology
focuses on the larger agricultural parcels (above 10 ha) due to the restrictions of spatial res-
olution of PROBA-V products. Sentinel-2 images require additional processing but would
enable expansion of the proposed methods on much smaller agricultural parcels. LAI
and FAPAR derived from the 10 m spatial resolution Sentinel-2 images were successfully
implemented in crop suitability studies [28], presenting a basis of the proposed method
upgrade for the micro-scale analysis. The possible limitation during the creation of training
and test samples using LAI and FAPAR as reference values might be the availability of
soybean or other crop types ground truth agricultural parcels on the national level. Since
these data are usually collected and distributed by national agencies, these data might
not be easily accessible in some less developed parts of the world. However, this can be
overcome by implementing crop type classification algorithms based on LAI and FAPAR
using machine learning, which enabled the extraction of a particular crop type with 80% or
higher accuracy in a recent study by Waldner et al. [65].

The yearly prediction accuracy trends from this study imply that the inclusion of
the larger sample count over the larger area would result in higher prediction accuracy.
Such an approach would also ensure the applicability of the proposed cropland suitability
assessment method for minor crop types. The optimal training sample count in the
restricted subset areas within Continental Croatia could be ensured for major crop types
like soybean, wheat, maize, sunflower and rapeseed at the present time [40]. Additionally,
the inclusion of additional covariates in the proposed cropland suitability assessment
method could benefit the prediction accuracy, especially using RF [50]. The observations
from sensitivity analysis considering the proximity to major land cover classes and soil
types indicate that these covariates would be an important addition to future studies.
Heterogeneity of suitability values of proximity zones to urban areas indicated a possible
significant impact of socio-economic covariates in cropland suitability assessment, like
population density [66]. Potential and actual evapotranspiration [8] and actual solar
irradiation [67] were successfully derived using the free remote sensing data sources. These
covariates would also likely improve the presently used theoretical values calculated
from DEM for the majority of crop types besides soybean. Hengl et al. [50] noted the
sensitivity of machine learning methods to inaccuracies in covariate data, which could
have a significant impact on model performance. This indicates a necessity of accurate
harmonization of input data during the resampling process, especially considering a more
sensitive downscaling process, which should be considered during the addition of new
covariates. The implementation of deep learning methods could present a viable option
for the improvement of cropland suitability assessment accuracy in the future. At the
present time, these methods generally lack computational efficiency of prediction due to
the presence of large and complex training and covariate data [68]. Since this approach
requires considerable and expensive hardware resources, it presently impairs the global
and low-cost character of the proposed method. With the further improvement of deep
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learning, it is expected that it will enable an upgrade to conventional machine learning,
presenting an even more effective basis of cropland suitability assessment.

Another possible improvement of prediction accuracy of the machine learning meth-
ods is through implementing the most recent covariate data. The likely reasons for the
lower prediction accuracy for the years 2019 and 2020 compared to the years prior were mi-
nor temporal disagreements of input covariates with the study period. Low mean cropland
suitability values during the dry and hot year of 2018, compared to the years 2017 and 2019,
further reinforces the need for accurate recent data due to sensitivity of suitability values to
climate input. The application of the SoilGrids data referenced to the year 2017 was slightly
obsolete for the prediction forthcoming years, since soil chemical properties like N and
SOC are susceptible to temporal variations [69]. The ambiguities related to the inability
to accurately track and model crop and soil management systems by farmers at the local
scale indicate the necessity of including multiple data sources for the multi-year cropland
suitability assessment. A possible solution is the integration of presently used SoilGrids
data with the updated SoilGrids version 2.0 [70], which should establish a reliable global
soil dataset for future studies. Similar observations were made about the climate data,
which are subjected to the recent impact of climate change [4]. Even with the application of
the most recent global climate data using the CHELSA dataset (1979–2013) [49], the effects
of climate change within the past decade remain largely uncovered by previous cropland
suitability assessment studies. Therefore, the comparison of multitemporal cropland suit-
ability results, periodically updated with new climate data, would likely reflect climate
change effects and allow farmers to make necessary adjustments. A possible solution for
including the most recent climate change in the prediction could be the integration of
present global climate datasets with the historic weather data within the study period [11].
This approach could enhance the proposed method by including the most recent climate
trends using the freely accessible global weather data from a variety of online weather
portals or national meteorological agencies.

5. Conclusions

The proposed cropland suitability assessment method based on machine learning
represents a potential alternative and upgrade to conventional cropland suitability de-
termination using a conventional GIS-based multicriteria analysis. Its advantages are
primarily reflected in its computational efficiency, objectivity during the prediction and
the ability to integrate complex input covariates. The proposed method is based on open
remote sensing and GIS data and software, which makes it widely available worldwide.
RF produced superior suitability assessment results to SVM in cases of moderate sample
count and a high amount of complex input covariates. Its accuracy is expected to further
grow with the inclusion of the additional covariates, including socio-economic covariates,
evapotranspiration, solar irradiation and proximity to land cover classes. The creation of
the study area larger than 50 × 50 km2 is also expected to increase suitability assessment
accuracy, due to the increased training sample count and better model fitting. The presence
of the highly suitable S1 class per FAO classification was noted in the 6.1% of Subset A and
1.5% of Subset B. This observation encourages the re-evaluation of present agricultural
land management plans, as the agricultural land in Subset A is presently not adequately
utilized for soybean cultivation, contrary to the intensively cultivated agricultural land in
Subset B.

The accurate and straightforward cropland suitability determination method is nec-
essary to ensure a widely available solution for effective agricultural land management
for the sustainability of agricultural production. The proposed method overcomes the
limitations of the conventionally used GIS-based multicriteria analysis, and could turn
the attention to machine learning in future cropland suitability determination studies.
Future studies will be directed in its adjustment to various crop types and the scaling to
micro-locations by implementing high-resolution Sentinel-2 images.
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Appendix A

Table A1. Climate properties of subset areas per year in the 2017–2020 period between April
and October.

Subset/Year
Air Temperature (April–October) Precipitation (April–October)

Mean
CHELSA Annual Difference

from Mean
Mean

CHELSA Annual Difference
from Mean

A/2020

17.5 ◦C

17.1◦C –2.1%

547.6 mm

640.1 mm +16.9%
A/2019 17.4◦C –0.3% 689.5 mm +25.9%
A/2018 18.4◦C +5.2% 479.6 mm –12.4%
A/2017 17.4◦C –0.5% 546.5 mm –0.2%

B/2020

17.9 ◦C

17.8◦C –0.3%

449.2 mm

462.3 mm +2.9%
B/2019 18.1◦C +1.3% 558.7 mm +24.4%
B/2018 19.2◦C +7.2% 422.0 mm –6.1%
B/2017 18.0◦C +0.8% 449.5 mm +0.1%

Table A2. The accuracy assessment of downscaling methods of CHELSA mean air temperature and
precipitation data compared to ground truth data from DHMZ stations.

CHELSA Dataset
Mean Air Temperature (◦C) Precipitation (mm)

R2 RMSE R2 RMSE

Native (1000 m) 0.9513 0.9643 0.7190 43.3024
NN (300 m) 0.9507 0.9659 0.7137 43.9376
BI (300 m) 0.9512 0.9631 0.7128 43.9296

BSI (300 m) 0.9513 0.9646 0.7203 43.1707

NN: nearest neighbour, BI: bilinear interpolation, BSI: B-spline interpolation.

Table A3. Mean LAI and FAPAR values per suitability class after K-means unsupervised classification.

Year Suitability Class
Subset A Subset B

Elements Mean LAI Mean FAPAR Elements Mean LAI Mean FAPAR

2020 S1 23 3.058 0.647 52 2.787 0.551
S2 42 2.488 0.535 148 2.355 0.545
S3 52 2.376 0.571 74 1.990 0.545
N1 57 2.126 0.552 171 1.988 0.534
N2 62 1.924 0.561 115 1.556 0.495

2019 S1 32 2.122 0.582 48 1.969 0.541
S2 47 2.280 0.533 69 2.366 0.493
S3 54 1.912 0.544 157 2.166 0.507
N1 39 1.967 0.506 186 1.833 0.507
N2 34 1.808 0.520 158 1.651 0.508
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Table A3. Cont.

Year Suitability Class
Subset A Subset B

Elements Mean LAI Mean FAPAR Elements Mean LAI Mean FAPAR

2018 S1 74 2.524 0.538 75 2.496 0.498
S2 37 2.291 0.521 153 2.183 0.500
S3 66 1.954 0.560 197 1.848 0.490
N1 63 2.072 0.526 174 1.552 0.475
N2 64 1.788 0.511 68 1.566 0.455

2017 S1 23 2.203 0.588 128 2.076 0.495
S2 48 2.017 0.554 78 1.721 0.507
S3 57 2.131 0.488 203 1.646 0.461
N1 84 1.571 0.495 78 1.465 0.450
N2 87 1.801 0.477 181 1.333 0.441
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6. Jurišić, M.; Radočaj, D.; Šiljeg, A.; Antonić, O.; Živić, T. Current Status and Perspective of Remote Sensing Application in Crop
Management. J. Cent. Eur. Agric. 2021, 22, 156–166. [CrossRef]

7. Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical
Counties in Northeast China. Land 2021, 10, 107. [CrossRef]

8. Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of
Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [CrossRef]

9. Harrison, P. (Ed.) World Agriculture: Towards 2015/2030: Summary Report; Food and Agriculture Organization of the United
Nations: Rome, Italy, 2002; ISBN 978-92-5-104761-3.

10. United States Department of Agriculture. World Agricultural Supply and Demand Estimates. Available online: https://www.
usda.gov/oce/commodity/wasde/wasde0421.pdf (accessed on 13 May 2021).
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GENERAL DISCUSSION 

 
Previous studies dominantly regarded GIS-based multicriteria analysis as the current 

standard of quantifying cropland suitability (Dedeoğlu and Dengiz, 2019; Layomi Jayasinghe 

et al., 2019; Mandal et al., 2020; Jurišić et al., 2020). Its flexibility and global applicability 

made it an indispensable method in suitability studies in a wide field of scientific disciplines. 

In addition to agriculture, it has frequent applications in forestry, ecology, healthcare and 

economics (Jurišić et al., 2021). However, fundamental flaws of this approach reduce its 

effectiveness with the increasing demand for reliability and global applicability. Their three 

major disadvantages were addressed in this dissertation, with their impact on the cropland 

suitability being analyzed according to major processing steps in this chapter. The standard 

procedure of GIS multicriteria analysis consists of six basic steps (Šiljeg et al., 2020): 

• determining the aim of the analysis, 

• selection of suitability criteria, 

• standardization of input values, 

• weighting of criteria, 

• suitability calculation, 

• sensitivity analysis. 

The aim of GIS-based multicriteria analysis in previous studies was set to determine the 

suitability of agricultural crops in a particular geographical area. An important component of 

the analyzed studies is the temporal definition of the analysis, which is conditioned by the 

availability of data from one or more consecutive sowing seasons (Feyisa et al., 2020). 

Knowledge of the time span of the analysis is also necessary due to the temporal variability of 

the basic abiotic factors, primarily climatic and pedological (Hengl et al., 2017). The proposed 

methods, which integrate machine learning and open data satellite imagery, were founded on 

the same assumptions. This property enables a multitemporal comparison of suitability results 

from the two approaches, allowing historical accuracy assessment and update of cropland 

management plans. With the development of satellite missions with open data access, the 

adaptation of cropland management to the classification of abiotic factors (climate, soil and 

topography) became increasingly accessible (Radočaj et al., 2020), which was utilized in the 

dissertation. Their availability has a strong perspective for future decades, given the longevity 

of existing satellite missions and their continuous development and upgrade. These facts allow 

regular updating of the cropland suitability results for cultivating certain crops, which is 

necessary due to the temporal variability of climate and soil properties caused by climate change 

and inadequate cropland management (Chemura et al., 2020). Previous cropland suitability 

studies in continental Croatia indicated high variability in the suitability levels for cultivating 

certain crops (Jurišić et al., 2020; Šiljeg et al., 2020). Farmers' target yields based on relative 

comparisons with neighboring agricultural parcels are an additional factor that may result in 

increased application of fertilizers and pesticides in naturally unsuitable locations. Therefore, 

computationally efficient suitability determination methods based on machine learning should 

be increasingly in demand. 
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The selection of abiotic criteria for agroecological suitability modeling using GIS-based 

multicriteria analysis in previous research was conducted by combining the analysis of previous 

studies and expert opinion (Dedeoğlu and Dengiz, 2019). This procedure was based on the 

assumption that each micro location for the cultivation of an agricultural crop is 

agroecologically specific (Mandal et al., 2020). The selection of type and quantity of abiotic 

criteria for a particular location and crop type was based on the knowledge of one or more 

agronomic experts. Abiotic criteria were regularly divided into climate, soil and topography 

criteria groups, representing three major impacts on cropland suitability (Layomi Jayasinghe et 

al., 2019; Dedeoğlu and Dengiz, 2019; Møller et al., 2021). Although most of these studies 

focused on these criteria groups, their quantity differed significantly depending on the crop type 

and geographical location (Table 1). The exceptions to the application of climate, soil and 

topography criteria were constraints, representing suitable land cover classes and irrigation 

system categories. The selection of climatic criteria directly depends on the extent of the study 

area, whereas for smaller areas (like municipalities) climate homogeneity is assumed (Jurišić et 

al., 2020). 

Table 1. Distribution of three major criteria groups in previous studies based on cropland 

suitability determination using GIS-based multicriteria analysis. 

Crop type 
Criteria group content (%) Total 

criteria 
Reference 

climate soil topography 

tea 22% 22% 56% 9 
Layomi Jayasinghe et al. 

(2019) 

maize, rice 17% 33% 50% 8 Mandal et al. (2020) 

soybean, 

maize 
27% 18% 55% 16 Song and Zhang (2021) 

wheat 0% 20% 80% 10 Dedeoğlu and Dengiz (2019) 

maize 88% 0% 13% 8 Chemura et al. (2020) 

pepper 0% 14% 86% 7 Jurišić et al. (2020) 

barley 20% 50% 30% 10 Šiljeg et al. (2020) 

 

The variability in the number of abiotic suitability criteria used and their distribution 

among the criteria groups indicate a high influence of human subjectivity in their selection. 

Although this approach allows for effective benefit modeling based on expert knowledge, it is 

potentially unreliable and biased (Taghizadeh-Mehrjardi et al., 2020). The computational 

inefficiency of this approach is expressed by the deviation from seven criteria as the optimal 

number in AHP, optionally ranging from five to nine criteria per Saaty and Ozdemir (2003). In 

line with these recommendations, the application of fewer than four criteria allow only a limited 

representation of cropland suitability. Ten or more criteria represent a wider range of abiotic 

criteria but also increase the possibility of error and computational complexity in subjective 

comparison of the relative importance of criteria. Both subjectivity and inability of integrating 

environmental data in the GIS environment were effectively resolved with the application of 

machine learning. It supported the processing of big data, as well as the integration of their 

various types, establishing complex nonlinear relationships between training data and 

independent predictors (covariates) (Hengl et al., 2017). Contrary to manual and subjective 
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weight calculation of individual abiotic criteria on suitability result (Layomi Jayasinghe et al., 

2019; Jurišić et al., 2020), machine learning approach in this dissertation allowed fully 

automated and objective feature importance determination. 

Spatial modeling of selected abiotic criteria in the GIS environment is most often 

performed in a raster data model (Jurišić et al., 2020). The input data are commonly distributed 

in numerous combinations of data types, according to various institutional and scientific 

sources. Spatial modeling of complex abiotic criteria can also cause human-based errors during 

their preprocessing and transfer them to the final suitability result. Soil texture, as a frequently 

used criterion in cropland suitability studies, was partially represented in previous studies by 

global standards with subjective modifications (Layomi Jayasinghe et al., 2019) or application 

of different standards with the same goal (Taghizadeh-Mehrjardi et al., 2020; Møller et al., 

2021). Since one of the most common approaches to selecting criteria is the analysis of previous 

studies, such cases cause potential inaccuracy in the selection of value ranges in further 

standardization and weighting procedures. The input data for soil texture is point vector soil 

sampling data, containing the value of clay, silt and sand content. To convert this data into a 

raster form, it is necessary to perform a prediction of soil values at unsampled locations by 

spatial interpolation (Song and Zhang, 2021). The selection of the optimal method and 

parameters of spatial interpolation was a necessity for reliable modeling of input criteria, which 

decreases significantly if these are not adjusted to the properties of input values (Jurišić et al., 

2020). The relative complexity of soil texture modeling, as well as subjectivity in the selection 

of spatial interpolation method, parameters and classification standards, indicates a potential 

reduction in human error by automating the process (Hengl et al., 2017). The same approach in 

this dissertation increased the time efficiency since it does not require individual tool processing 

in GIS and facilitates data distribution using a globally accepted standard. By the same 

principle, the developed processing framework is easily adaptable to various abiotic criteria in 

cropland suitability studies. 

In the standardization process, heterogeneous input value ranges of spatially modeled 

abiotic criteria were transformed to a uniform numerical standardization interval (Layomi 

Jayasinghe et al., 2019). Numerical intervals such as [0,1], or more often [1,5] are commonly 

used, which allows straightforward representation of suitability with the five classes defined by 

the Food and Agriculture Organization of the United Nations (FAO) standard. Aside from 

combining values expressed in various measurement units, it also integrates both quantitative 

and qualitative data, which is often necessary for determining cropland suitability (Dedeoğlu 

and Dengiz, 2019). Three basic standardization methods were used in previous studies: linear 

stretching, stepwise standardization and fuzzy standardization. The minimum and maximum 

input values in linear stretching correspond to the limit values of the defined standardization 

interval. Although very simple and completely objective, the linear stretching method produces 

unreliable standardization if the input data contain extreme values, which is often the case in 

suitability studies. On the contrary, the stepwise standardization method is a completely 

subjective method, based on discrete ranges of input values for an individual standardized 

value. The suitability level is thus quantified by generalized and approximated numerical 

values, mostly of equal coverage (Jurišić et al., 2020). Due to the simplicity and flexibility of 

the procedure, this method has found the most frequent application in previous cropland 
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suitability studies (Layomi Jayasinghe et al., 2019; Šiljeg et al., 2020). Standardization by the 

fuzzy method combines the advantages of the previous two methods with continuous 

standardization and relative objectivity using mathematical models, as well as implementing 

standardization thresholds based on a subjective approach (Mandal et al., 2020). Alternatives 

in choosing mathematical models of fuzzy logic (linear, S-shaped, J-shaped, and G-shaped) 

allow for additional standardization flexibility. While the majority of previous studies 

implemented a simple stepwise standardization (Mandal et al., 2020; Šiljeg et al., 2020), fuzzy 

method allowed greater flexibility and produced more accurate suitability results in this 

research. Nevertheless, fuzzy logic methods are much less commonly used in suitability studies 

compared to the stepwise standardization method. The exact impact of standardization methods 

on the accuracy of suitability results was not found in the existing literature, leaving users a 

subjective choice of standardization method without a scientific basis. The comparative 

assessment of these standardization methods in this dissertation proved that the variety of 

available methods in the complex GIS-based multicriteria analysis should be more thoroughly 

evaluated in future studies. 

In contrast to standardization, which evaluates suitability within a single criterion 

according to its value range, criteria weights quantify the relative importance of all selected 

suitability criteria (Saaty and Ozdemir, 2003). Since input abiotic factors affect the cropland 

suitability to a varying degree, weights are assigned to all criteria to proportionally express their 

impact on final suitability. Sensitivity analyses in previous studies found the criteria weighting 

had the highest impact on cropland suitability results in the GIS-based multicriteria analysis 

(Dedeoğlu and Dengiz, 2019). There is a number of alternative methods for the weighting of 

abiotic criteria, ranging from simple estimation methods to advanced methods such as AHP, 

TOPSIS, ELECTRE, and PROMETHEE (Layomi Jayasinghe et al., 2019). A common feature 

of all weighting methods is that the sum of all weights equals 1, denoting 100% of the influence 

of selected input abiotic criteria on suitability. Previous studies noted the advantages of AHP 

in terms of flexibility and simplicity (Šiljeg et al., 2020; Song and Zhang, 2021), causing its 

dominant selection in cropland suitability studies (Table 2). 

Table 2. The application of criteria weighting methods in cropland suitability papers 

indexed in Web of Science Core Collection during 2000–2020. 

Method 
Published papers indexed in Web of Science Core Collection 

2000–2020 2010–2020 

AHP 160 152 

TOPSIS 7 7 

PROMETHEE 4 4 

ELECTRE 3 3 

machine learning 20 20 

 

The principle of AHP is based on the relative pairwise comparison of all combinations 

of input criteria, denoting a proportionally more influential abiotic factor with an integer in the 

interval [1,9]. Although each result of the pairwise comparison is checked by consistency index, 

in the case of more than nine criteria, the weighting process becomes too complex and prone to 

inconsistency. Previous suitability studies have identified the difficulties of comprehensive 
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suitability modeling with the recommended number of abiotic factors (Dedeoğlu and Dengiz, 

2019; Song et al., 2021). The susceptibility of weighting to human subjective assessments in a 

high number of pairwise comparisons and the inability to select an arbitrary number of criteria 

are currently the two biggest shortcomings of the application of AHP in GIS-based multicriteria 

analysis. The application of machine learning in the method proposed in this study resolved 

these issues, removing the most impactful source of subjective sources on the cropland 

suitability results. 

The suitability calculation based on standardized values of input abiotic factors and their 

weights is the simplest and most uniform step in GIS-based multicriteria analysis (Dedeoğlu 

and Dengiz, 2019; Jurišić et al., 2020). The weighted linear combination is a conventional 

choice for calculating suitability, multiplying the standardized values and their respective 

weights. The range of suitability values corresponds to an arbitrarily selected numerical 

standardization interval. Many authors emphasized the importance of applying globally 

accepted standards in classifying the cropland suitability for cultivating a particular crop type. 

The FAO classification of cropland suitability into five classes is considered the standard in 

numerous studies (Layomi Jayasinghe et al., 2019; Šiljeg et al., 2020). Its application facilitated 

the comparison of suitability values between crops and for different locations for the same crop. 

While it is a necessary procedure in all similar forms of spatial analysis, accuracy 

assessment is often omitted from cropland suitability studies using GIS-based multicriteria 

analysis. There is a very limited set of data that can be used to validate the complex concept of 

cropland suitability (Taghizadeh-Mehrjardi et al., 2020). In the majority of previous studies in 

which the accuracy assessment has been applied, crop yield data have been used as a real 

measure of suitability (Dedeoğlu and Dengiz, 2019). It is also affected by components that 

cannot be modeled in a GIS environment, such as the implementation of agrotechnical 

operations at the micro level, which makes it an incomplete indicator of suitability. The 

availability of yield data per agricultural parcel is very limited and uneven globally. In Croatia, 

there is currently no official and reliable database of yield data for individual agricultural 

parcels in a continuous area. Therefore, the implementation of conventional cropland suitability 

studies is very limited, subjected to the subjectivity of individual experts and without an 

external and objective accuracy assessment of the suitability results. Although previous 

suitability studies based on machine learning indicated superior performance for suitability 

calculation over GIS-based multicriteria analysis, present development only partially addressed 

its fundamental shortcomings. This primarily refers to the lack of reference parameters for the 

validation of suitability results, which is based on the same assumptions as for the conventional 

approach. Frampton et al. (2013) reported the possibility of calculating various biophysical 

variables from satellite multispectral data, such as leaf area index (LAI), the fraction of 

absorbed photosynthetically absorbed radiation (FAPAR), and the canopy chlorophyll content. 

A very important feature of these data is the high correlation with crop yields in individual 

growth stages, representing the possibility of using these data for training and validation of 

suitability models (Habyarimana et al., 2019). The importance of LAI and FAPAR is 

emphasized in determining the impact of climate change on vegetation according to United 

Nations standards, indicating high potential in suitability studies (Frampton et al., 2013). These 

possibilities were further enhanced by the launch of Sentinel-2 and Sentinel-3 satellite 
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multispectral missions, which enable the modelling of biophysical vegetation variables in high 

and medium spatial resolution. The application of remote sensing data additionally avoids 

expensive and time-consuming collection of ground-truth data by terrestrial methods, especially 

in the case of larger areas and less developed transport infrastructure, which is characteristic of 

most agricultural parcels (Feyisa et al., 2020).  



79 
 
 

CONCLUSIONS 

 
Two of the most commonly used approaches to increase crop yield production include 

expanding cropland by transforming land cover and increased application of fertilizers and 

pesticides, which is not sustainable in the long term and threatens biodiversity. An alternative 

approach to increase crop yield while ensuring agricultural sustainability focuses on improving 

cropland management, by cultivating each crop in a naturally suitable location, which also 

decreases the need for fertilizers and pesticides. The expected scientific contribution of this 

dissertation is a more reliable, objective and computationally efficient procedure for 

determining the cropland suitability compared to conventional GIS-based multicriteria analysis. 

Three methods of spatial data analysis were developed: 

1. A computationally efficient method of suitability validation using global satellite 
missions of high (Sentinel-2) and medium spatial resolution (PROBA-V); 

2. An automated method of spatial modeling of abiotic criteria on the example of soil 
texture according to a globally accepted standard; 

3. Suitability prediction method based on machine learning algorithms and globally 
available spatial data which allow high reliability of prediction with reduced 
subjectivity of users in relation to GIS-based multicriteria analysis. 

The upgrade of the conventional GIS-based multicriteria analysis was performed 

primarily by developing and analyzing the method of validation of suitability results using the 

NDVI vegetation index from Sentinel-2 multispectral images. During the full ripening (R6) 

growth stage, the peak NDVI values of each soybean parcel were determined. Based on 

previous research, the highest correlation of NDVI with soybean grain yield was determined at 

this growth stage, which has a high potential for an effective and widely available alternative 

to the conventional validation method. In addition, the impact of the standardization method on 

the accuracy of cropland suitability determination was analyzed, which was not yet performed 

in previous research. By choosing the optimal spatial interpolation method and parameters for 

climate and soil criteria, suitability for smaller datasets was modelled, which is characteristic 

for local administrative units. The cropland suitability for soybean cultivation was classified by 

the K-means method of unsupervised classification for compliance with the FAO standard of 

suitability classification. This approach is applicable for any crop type which produces a high 

correlation between any satellite-derived vegetation index and ground-truth yield components 

during one or more growth stages. Due to the open data availability of Sentinel-2 and similar 

missions, the possibilities of cropland suitability accuracy assessment became accessible for 

the majority of future studies. 

Automating the process of spatial modeling of soil texture criterion was performed 

based on 255 soil samples on agricultural land in continental Croatia. By determining the 

optimal method and parameters of spatial interpolation according to five randomly created 

training and test data sets, the transformation of input data into a raster form was performed. 

Based on interpolated rasters of clay, silt and sand, a Python script for spatial georeferencing 

and automated classification of soil texture according to the USDA classification in 12 classes 

was developed. Testing of the procedure for the purpose of determining the cropland suitability 
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for soybean cultivation was performed by analyzing the suitability of individual classes of soil 

texture from previous studies, resulting in standardized suitability values in accordance with 

the FAO standard. The proposed procedure represents an example of the freely available 

algorithm for the automation of the component of suitability determination, which might be a 

foundation of an open-access library for more reliable and time-efficient spatial processing. 

LAI and FAPAR from PROBA-V satellite mission data were selected to form reference 

data in a novel approach of machine learning cropland suitability prediction due to the high 

correlation with biomass and crop yield. The suitability classes of the reference data were 

determined based on their values on historical soybean agricultural parcels by the unsupervised 

K-means classification. Random division of this data formed training and test samples, which 

also satisfied the need to validate the suitability results. Based on training data and covariates 

representing climate, soil and topography criteria, RF and SVM machine learning methods were 

used to determine the suitability level on the entire agricultural land in the study area. The 

relative importance of input abiotic criteria was assessed after classification by machine 

learning methods, which represent an objectively determined equivalent of AHP weights from 

the conventional approach of GIS-based multicriteria analysis. The accuracy assessment of 

individual annual suitability results was performed on the basis of the figure of merit and overall 

accuracy, with rasters determined by the optimal machine learning method being singled out 

for further processing. Their values were aggregated within the unsupervised classification by 

the K-means method, resulting in the final suitability classes. This approach resolved most 

major disadvantages of the GIS-based multicriteria analysis, producing a completely objective 

results, allowing the integration of big and complex spatial data and enabling cropland 

suitability accuracy assessment using the freely available satellite data. Due to the requirement 

of training and test data, this method is applicable for all major crop types but can lack for less 

common crops since these are cultivated on a lower number of smaller agricultural parcels. 

Future studies will be directed on improving the spatial resolution of the proposed method by 

implementing biophysical variables from Sentinel-2, allowing up to 10 m spatial resolution. 

This would be a complimentary analysis to one presented in the dissertation, being applicable 

on a much larger scale and possibly representing a base for variable rate application in precision 

agriculture for agricultural parcels larger than 10 ha. While proposed methods were 

fundamentally developed for the application for all major crop types, future studies will also be 

directed on their evaluation for other major crops, as well as their accuracy under different 

agricultural land management systems. 
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